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Discussion on Novelty
What is novel in TIMAM? What has been done and what

is new in the proposed approach? Since all these are valid
questions that the interested reader might have, we aim to
provide the reader with an in-depth understanding of the
contributions of our work and how these result in advan-
tages over previous work.

Our method is novel in that we take a different approach
in learning the embeddings from both modalities. Specifi-
cally, we leverage an adversarial discriminator, which helps
TIMAM to learn modality-invariant discriminative repre-
sentations. It is a very effective addition that can eas-
ily be applied to other cross-modal matching applications
(e.g., audio-visual retrieval). Our ablation studies, in two
very challenging datasets, showed improvements of ∼3%
on the CUHK-PEDES dataset and ∼1.8% on the Flickr30K
dataset, when the adversarial discriminator is used. These
results demonstrate that adversarial learning is well-suited
for cross-modal matching.

The second contribution of this work is that we demon-
strated that a pre-trained language model can successfully
be applied (with some fine-tuning) to computer vision appli-
cations such as text-to-image matching. Our results demon-
strated that we can improve our feature representations
when better word embeddings are learned in this manner.
In summary, the advantages of TIMAM over prior work can
be described as follows:

– TIMAM improves upon CMPM [26] (previous best
performing method on the CUHK-PEDES, Flowers,
and Birds datasets) by employing a domain discrimina-
tor, which results into more discriminative representa-
tions. Unlike CMPM, we do not perform cross-modal
projections in the classification loss since we observed
that their contribution is insignificant. Instead we em-
ploy identification losses for the visual and textual fea-
tures and present their impact in the first ablation study.

– TIMAM improves upon the previous best performing
method on the Flickr30K dataset by learning better

Algorithm 1: Training Procedure of TIMAM
Input : Batch (B) of image-text pairs (Vi, Ti) with

their label Yi, pre-trained ResNet-101
weights, pre-trained BERT weights

1 φ(Vi)← extract visual embedding by feeding Vi to
image backbone

2 τ(Ti)← extract textual embedding by feeding Ti to
text backbone and then to the LSTM

3 LV
I ← compute identification loss for the images
using (Vi, Yi). Similarly compute LT

I for the text.
4 pi,j ← compute the probability of matching φ(Vi)

to τ̄(Tj)
5 qi,j ← compute the true matching probability using

Yi as well as the rest of true labels in B)
6 LV

M ← compute cross-modal projection matching
loss as the KL divergence from qi to pi

7 Repeat steps 4-6 for the text modality to compute
LT
M by normalizing φ(Vi) instead of τ(Ti)

8 LD ← compute adversarial loss by passing φ(Vi)
and τ(Ti) through the discriminator

9 Update network parameters using:
L = LD + LV

I + LT
I + LV

M + LT
M

Output: Network weights

textual embeddings using the fine-tuning capabilities
of BERT (as well as employing the adversarial repre-
sentation learning framework).

– TIMAM is very easy to reproduce, which is not the
case with prior work that requires complex attention
mechanisms at both modalities [20] or text reconstruc-
tion objectives [2]. To obtain our results one can sim-
ply fetch an image backbone and a deep language
model and then follow the steps described in Alg. 1.

Implementation Details
Datasets: The first dataset used was the CUHK-
PEDES [14] which consists of 40,206 images of in-
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Table 1: Notation used throughout our paper

Notation Sign Description

V The visual (i.e., image) modality
T The textual modality
Vi A sample from the visual modality
Ti A sample from the textual modality
Yi The ID/Category label of the pair

φ(·) The feature extractor at the image modality (i.e., ResNet-101)
τ(·) The feature extractor at the textual modality (i.e., BERT, the LSTM and the FC- layer)
τ̄(·) Normalized textual features

GV , GT Generators from the visual and textual modality (i.e., φ() and τ())
D Cross-modal discriminator

(Wi, bi) Weights and bias of the last FC-layer that produces the embedding
B Batch size

pi,j Probability of matching each visual embedding to each normalized textual embedding in the batch
qi,j True matching probability for each pair in the batch
si,j Cosine similarity between ith probe and jth gallery sample

LV
I Norm-softmax cross entropy loss used for identification for the visual embedding
LT

I Norm-softmax cross entropy loss used for identification for the textual embedding
LI Summation of the two identification losses from both modalities
LV

M KL-divergence loss used for cross-modal (V− > T ) projection matching
LT

M KL-divergence loss used for cross-modal (T− > V ) projection matching
LM Summation of the two cross-modal projection losses from both modalities
LD Adversarial loss of the discriminator
L Loss used to train our network: summation of individual sub-losses

dividuals of 13,003 identities, and each image is de-
scribed by two textual descriptions. The dataset is
split into 11,003/1,000/1,000 identities for the train-
ing/validation/testing sets with 34,054, 3,078 and 3,074 im-
ages respectively, in each subset. The second dataset was
the Flickr30K [21] which contains 31,783 images with five
text descriptions each. The data split introduced in the work
of Karpathy and Fei-Fei [10] is adopted which results in
29,783/1,000/1,000 images for training validation and test-
ing respectively. The third dataset was the Caltech-UCSD
Birds (CUB) [22], which comprises 11,788 bird images
from 200 different categories. Each image is labeled with
10 descriptions and the dataset is split into 100 training, 50
validation and 50 test categories. Finally, the Oxford102
Flowers (Flowers) [22] dataset was used, which consists of
8,189 flower images of 102 different categories. Each im-
age is accompanied by 10 descriptions and the dataset is
split into 62 training, 20 validation, and 20 test categories.
Data Pre-processing: For the CUHK-PEDES dataset all
images were resized to 128 × 256 since pedestrians walk-
ing are usually rectangular. For the rest of the datasets,
all images were resized to 224 × 224. For the textual in-
put, basic word tokenization was performed by mapping
each word to the vocabulary accompanying the base BERT

model pre-trained on the uncased book corpus and English
Wikipedia datasets.1 For the CUHK-PEDES dataset the
maximum length of the sentences was set to 50 words (fol-
lowing the pre-processing steps of Li et al. [14]) whereas
for the rest of the datasets it was set to 30 words (fol-
lowing the pre-processing steps of Zhang and Lu [26] for
Flickr30K and Reed et al. [22] for the CUB and Flowers
datasets). Thus, sentences shorter than the maximum length
were zero-padded, whereas those longer than the threshold
were trimmed.
Data Augmentation: During data augmentation images
were upscaled to ×1.25 the original size in both dimen-
sions and random crops of the original dimensions were ex-
tracted and fed to the model. In addition, data shuffling,
random horizontal flips with 50% probability and color jit-
tering were employed.
Architecture Details: We used the pre-trained models of
ResNet-101 and BERT available online for the backbone
architectures of the two modalities while the rest of the lay-
ers were initialized with Xavier initialization.

• Image domain: Our backbone architecture on the vi-
1The pre-trained model we used is available at the Gluon-NLP

website: https://gluon-nlp.mxnet.io/model_zoo/bert/
index.html

https://gluon-nlp.mxnet.io/model_zoo/bert/index.html
https://gluon-nlp.mxnet.io/model_zoo/bert/index.html


sual domain is a ResNet-101 that extracts feature rep-
resentations of dimensionality 7 × 7 × 2, 048 (for an
input image with dimensions 224 × 224 × 3). These
representations are then fed to a fully-connected layer
after performing global-average pooling to extract the
image embedding of size equal to 512.

• Text domain: For the textual domain, each tokenized
input sentence of length is fed to the deep language
model which extracts a 768-D vector for each word.
The sequence of word embeddings is then fed to a
bidirectional LSTM with 512 hidden dimensions and
its output is then projected to a fully-connected layer
which outputs the text embedding of size equal to 512.

• Discriminator: We opted for a simple discriminator
comprising two fully-connected layers [FC(256)-BN-
LReLU(0.2)-FC(1)] that reduce the embedding size to
a scalar value which is used to predict the input do-
main.

Training Details: We present all the notation used through-
out our work in Table 1 for easier reference. We used
MXNet/Gluon as our deep learning framework and a single
NVIDIA GeForce GTX 1080 Ti GPU. We used stochas-
tic gradient descent (SGD) with momentum equal to 0.9 to
train the image and discriminator networks and the Adam
optimizer [11] for the textual networks. The learning rate
was set to 2 × 10−4 and was divided by ten when the loss
plateaued at the validation set until 2×10−6. The batch-size
was set to 64 and the weight decay to 4 × 10−4. The deep
language model was initially frozen and the rest of the pa-
rameters were updated until convergence. After this step,
we unfroze its weights and the whole network was fine-
tuned with a learning rate equal to 2× 10−6 for 30 epochs.
Successfully, training the discriminator required maintain-
ing an adequate balance between the two feature generators
and the discriminator. To accomplish that, we relied on sev-
eral of the tricks presented by Chintala et al. [4] on how to
train a GAN: (i) different mini-batches were constructed for
the features of each domain, (ii) labels were smoothed by re-
placing each positive label (visual domain) with a random
number in [0.8, 1.2], and each label equal to zero (textual
domain) with a random number in [0, 0.3], and (iii) labels
were flipped with 20% probability to introduce some noise.

Extended Quantitative Results
Due to space constraints in the main paper, we provided

quantitative results that contained the 8 best-performing
methods in each dataset. In Tables 2 and 3, we present
complete results against all approaches test in the CUHK-
PEDES and Flickr30K datasets. TIMAM surpasses all
methods in text-to-image matching but demonstrates infe-
rior performance compared to GXN [6] in image-to-text

Table 2: Text-to-image results on the CUHK-PEDES
dataset. Results are ordered based on the rank-1 accuracy.

Method Rank-1 Rank-5 Rank-10

iBOWIMG [28] 8.00 - 30.56
Word CNN-RNN [22] 10.48 - 36.66
Neural Talk [23] 13.66 - 41.72
GMM+HGLMM [12] 15.03 - 42.47
deeper LSTM Q+norm I [1] 17.19 - 57.82
GNA-RNN [14] 19.05 - 53.64
IATV [13] 25.94 - 60.48
PWM-ATH [3] 27.14 49.45 61.02
GLA [2] 43.58 66.93 76.26
Dual Path [27] 44.40 66.26 75.07
CAN [9] 45.52 67.12 76.98
CMPM + CMPC [26] 49.37 - 79.27

TIMAM 54.51 77.56 84.78

matching.

Extended Qualitative Results
In Figure 1 we present additional qualitative text-

to-image matching results on the CUHK-PEDES and
Flickr30K datasets. We observe that TIMAM is capable
of learning visual attributes related to soft-biometrics (e.g.,
sex of the individual), clothing (gray t-shirts on second row
to the left or teal t-shirts on the third row) as well as objects
such as hats (first row to the right) and backpacks (third and
fourth rows to the left). To our surprise, we can effectively
learn to match descriptions and images of scenes/actions
(biking in the woods, or people on a subway) while having
only a handful of such examples in the whole dataset.
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Figure 1: Additional qualitative text-to-image retrieval results on the CUHK-PEDES (left) and Flickr30K (right) datasets.
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