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Problem Statement

• Given an image of a human, the question is: how can someone effectively 

predict the corresponding visual attributes?

Motivation

• Recognize visual attributes using multi-task (MT) classification and curriculum 

learning

Contributions

• Introduced a curriculum learning paradigm to perform multi-task classification 

• Converged faster than typical MT learning by employing prior knowledge

Method

Ablation Studies
Results
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CILICIA Network Architecture
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Strongly Correlated Tasks

Knowledge 

Transfer

Weakly Correlated Tasks

Correlation-based Group Split

• Total dependency 𝑝𝑖 of task 𝑡𝑖: 𝑝𝑖 =  𝑗=1,𝑗≠𝑖
𝑇

𝑐𝑜𝑣 𝑦𝑡𝑖 ,𝑦𝑡𝑗

𝜎 𝑦𝑡𝑖 ∙𝜎 𝑦𝑡𝑗

, 𝑖 = 1,… , 𝑇

• Assign tasks with top 50% of 𝑝𝑖 as strongly correlated, rest as weakly

Multi-task Curriculum Learning

• Strongly-correlated loss: 𝐿𝑠 =  𝑡=1
𝑇 𝜆𝑡 ∙ 𝐿𝑡

• Weakly-correlated loss: 𝐿𝑤 = 𝜆 ∙ 𝐿𝑠 + (1 − λ)L𝑤
𝑓

Group Random Split CILICIA
CILICIA 

(without knowledge transfer)

Strongly 65.36 76.01 76.01

Weakly 63.08 71.80 69.91

Total 64.22 73.91 72.95

SoBiR Dataset

Group SVM
Individual 

Learning

Multi-Task 

Learning
CILICIA

Strongly Av. 58.3 69.3 71.3 72.3

Weakly Av. 65.6 73.0 73.2 73.7

Total Av. 61.9 71.2 72.3 73.1

VIPeR Dataset

Group
Multi-Task 

Learning
Zhu et al. [1] CILICIA

Strongly Av. 73.4 ± 2.6 75.7 ± 3.2 85.1 ± 1.0

Weakly Av. 71.9 ± 1.8 72.5 ± 1.7 74.8 ± 0.5

Total Av. 73.2 ± 1.2 74.1 ± 1.0 80.5 ± 2.6

Key Takeaway

Combining curriculum learning with multi-task classification improves the classification accuracy up to 1% 

in the SoBiR dataset and by approximately 6% in the VIPeR dataset.
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Overview

Backpack?Dark Clothes?Male? Hat?

Images of males, wearing hat, with dark clothes and a backpack

Male: 75%

Dark Clothes: 91%

Backpack: 62%

Hat: 71% 

Strongly Correlated Tasks Weakly Correlated Tasks

Knowledge Transfer

Q3: Does CILICIA converge faster?

Q2: Is correlation-base split beneficial? Q1: Is knowledge transfer beneficial?
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