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Figure 1. Sparse and dense ground truth for DensePose-COCO
dataset. Sparse ground truth: annotation available in the dataset.
Dense ground truth: pseudo ground-truth estimates are generated
on the fly by extrapolating both the available ground-truth annota-
tions but also the CSE initialization such that they cover the whole
estimated silhouette of the human

In this supplementary material we provide information
regarding the broader impact of our method (Sec. A) addi-
tional details regarding fine-tuning our proposed BodyMap
on real data (Sec. B) and an in-depth discussion on applica-
tions to neural re-rendering and cloth swapping with several
qualitative examples (Sec. C). Additional qualitative evalu-
ations and results are shown in the supplemental video.

A. Broader Impact
The positive impact of our technology is further dis-

cussed in the applications section, including novel view
synthesis and appearance swapping. While every human-
related technology may raise concerns of fraudulent activi-
ties, we should note that our approach does not reconstruct
facial or any other features used for personality identifica-
tion. Thus, it is not possible to identify a person using our
method, which makes our technology safe.

B. Fine-tuning BodyMap on real data
While BodyMap is trained with mostly synthetic data,

we further fine-tune it with DensePose-COCO dataset.
Available DensePose-COCO annotations are extremely

Method
Window (px)

5 10 20

DensePose [13] 49.23 55.75 59.71
CSE [14] 58.10 60.34 64.14
BodyMap: no ft 40.51 52.18 55.22
BodyMap: ft 1 56.12 60.02 63.15
BodyMap: ft 2 65.34 68.22 73.88

Table 1. Ablation study on the effectiveness of finetuning: met-
rics in 2D image space. We illustrate the accuracy in 2D space
on DensePose-COCO (the percentage of pixels correctly matched
within the established error window) before fine-tuning (no ft),
and after fine-tuning with: (i) sparse annotations with 100 la-
beled points per person (ft 1), and (ii) dense annotations, obtained
heuristically by interpolating annotations within silhouettes ft 2).
We include the performance of DensePose and CSE for compari-
son.

sparse (around 100 annotated pixels per person, also an-
notations are not present for small people in the back-
ground). Thus, we leverage a heuristically made dense
pseudo ground truth generation scheme. Given an image
from the dataset, we generate pseudo ground-truth estimates
on the fly by extrapolating both the available ground-truth
annotations but also the CSE initialization such that they
cover the whole estimated silhouette of the human (Fig-
ure 1). In that way we can fine-tune our model on real-data
with denser supervision and utilize losses in both 2D and
3D spaces.

We experimented with two ways of fine-tuning on real
data: (1) using only available sparse annotations (sparse
fine-tuning); (2) using the generated dense pseudo ground-
truth estimates (dense fine-tuning). The results of the both
schemes are presented in Tables 1 and 2, showing that dense
fine-tuning allows to get the best results beating competitive
methods such as HumanGPS, DensePose and CSE.
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Figure 2. Novel view rendering with BodyMap. Given an RGB image we first obtain its CSE [14] estimates and feed both to BodyMap
network to get refined per-pixel predictions covering the whole silhouette. With such correspondences we can obtain partial texture maps
that are very well aligned with the complete texture map which are then utilized to train a texture completion network to fill in the missing
information. At last, we use the BodyMap as a mapping function back to the image space where we train a neural re-rendering framework
that generates the photorealistic renders.

Method AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

DP [2] 55.3 85.6 60.1 48.3 58.2 66.8 90.1 68.2 50.1 66.1
CSE [14] 72.8 95.7 84.2 65.7 73.1 78.2 97.3 87.5 67.2 78.0
BodyMap: no ft 50.1 82.3 58.7 45.7 57.5 65.1 88.1 65.4 49.2 64.5
BodyMap: ft 1 70.3 94.2 83.1 63.2 72.1 77.8 96.5 85.1 65.9 76.1
BodyMap: ft 2 79.5 97.8 90.5 72.3 79.4 85.3 98.1 92.5 73.4 84.5

Table 2. Ablative studies on the effectiveness of finetuning:
metrics in 3D space. We illustrate Average Precision (AP)
and Average Recall (AR) over GPS scores on DensePose-COCO
dataset before fine-tuning (no ft), and after fine-tuning with: (i)
sparse annotations with 100 labeled points per person (ft 1), and
(ii) dense annotations, received heuristically by interpolating an-
notations within silhouettes ft 2). We also include the performance
of DensePose and CSE for comparison.

C. Applications
C.1. Rendering people in arbitrary poses/views

One of the straightforward applications of our pro-
posed BodyMap framework is re-rendering people in novel
poses/views. Previous attempts to do so include Tex-
former [21] — Transformer-based framework for 3D hu-
man texture estimation from a single image. They uti-
lize pre-computed color encoding of the UV space obtained
by mapping the 3D coordinates of a standard human body
mesh to the UV space as a Query, feeding it to the Trans-
former. We also rely on specifically designed Transformer-
based architecture to retrieve dense correspondences that
can lately be used as a mapping function between 2D im-
age space and 3D space. While we can do novel view ren-
dering without any extra efforts simply warping the texture
using BodyMap estimates as a mapping function, using ad-
ditional neural renderer significantly increases the quality

of the final render. Next we describe in the detail the pro-
posed pipeline for generating novel views consisting of two
main steps: texture completion network and neural render-
ing. The pipeline is also depicted in Figure 2.

C.1.1 Texture Completion Network

Given the BodyMap estimates and the foreground RGB
image we define a warping function that maps each fore-
ground pixel of the image space to the UV-map space using
BodyMap estimates as the mapping function. Note that in
the UV map space, every point on the mesh surface of a hu-
man body template is represented by its coordinates on this
UV map. We then train a texture completion neural network
that takes as input partial textures at 1024×1024 resolution
and completes the missing information by producing the
full texture. The fact that partial texture is so well aligned on
the UV map with full texture enables us to utilize a U-Net-
like architecture since the skip connections can transfer the
aligned input from the encoder to the decoder layers without
adding an additional overheard to the decoder. A challenge
that arises when dealing with high-resolution inputs is that
only a few samples can fit into the GPU memory during
training. Instance normalization blocks have widely been
used in such cases to avoid collecting batch statistics that
can be inaccurate due to the small sample size [1, 9], but
our experimental investigation indicated that instance nor-
malization produces completed textures with distorted col-
ors in non-visible regions. To overcome this challenge we
propose to utilize synchronized batch normalization which
differs from previous methods in the way the statistics are
computed over all training samples distributed on multiple



devices. This enables us to learn more accurate batch statis-
tics that can then be used at test-time with traditional batch
normalization blocks. Thus, given pairs of partial and full
textures ({PT , FT } ∼ T ) coming from the data distribution
we train the texture completion network with the following
losses:

• Hinge version [10, 23] of the adversarial loss,
along with a multi-scale discriminator as used in
Pix2PixHD [4]:

LG = −EPT∼pPT
,FT∼TD(G(PT ), FT ) (1)

LD = −E{PT ,FT }∼T [0,−1 +D(PT , FT )]

− EPT∼pPT
,FT∼T [0,−1−D(G(PT ), FT )]

(2)

• Perceptual loss. We utilize a pre-trained VGG [20]
network and compute the L1 loss between the com-
pleted texture estimate and the ground-truth texture
map at the activations of five different layers of the
network. Perceptual similarity losses help the network
to generate fine-level details which are common in the
textures of clothed humans.

• Total variation loss. We add a total variation (TV)
loss [12] with a small weight in order to encourage
spatial smoothness in the generated textures and re-
move some artifacts that are quite common in image-
to-image translation networks. The TV loss is formu-
lated as follows:

LTV =
∑
u

∑
v

|FT (u, v + 1)− FT (u, v)|

+ |FT (u+ 1, v)− FT (u, v)|
(3)

C.1.2 Neural Re-rendering

We present an additional step to obtain photo-realistic hu-
man renders after texture completion. While we can as-
sume access to 3D geometry for our synthetic data and per-
form rendering with tools such as Blender Cycles [3] or
PyTorch3D [15, 17], this is not the case for real-world ex-
amples. One approach to tackle this problem and obtain
a 3D geometry would be to estimate the 3D human body
pose [18] and shape from a single image by using any of the
recent state-of-the-art methods [5–8, 16, 22, 24, 25]. How-
ever, all these methods estimate the body under the cloth-
ing which is usually relatively slimmer and with pose in-
accuracies (e.g., the body bends forward) due to the depth
ambiguity which makes it unsuitable for rendering the tex-
ture of a clothed human on top. Thus, we propose a model

for neural re-rendering which aims at learning a function
X̃ = R(BodyMap, FT ) that given the complete texture
map FT and the estimated BodyMap generates a photore-
alistic render X̃ in the image space. The advantage of our
approach compared to prior work [19] is that BodyMap not
only provides a proper silhouette in the image space that
needs to be rerendered but also serves as a mapping func-
tion between the UV and the image space. This enables us
to warp the texture map back to the image space using the
BodyMap to obtain an initial estimate which is then fed to
an encoder-decoder network that generates the final output
render. The fact that BodyMap provides accurate per-pixel
foreground estimates makes the warped image well aligned
with a target output which simplifies the learning process
of the neural renderer. Finally, since during the warping
process some texture information can be lost due to warp-
ing inaccuracies [11], we pass FT through an encoder net-
work to generate a lower dimensional tensor representation
which is then fed via the bottleneck to the decoder of the
neural render. We train this network with the same losses
described that we used for texture completion network and
in addition, we employ the following two losses:

• Feature Matching Loss. We use a feature match-
ing loss in the discriminator layers [4] to obtain high-
frequency details such as wrinkles and cloth pat-
terns which is defined as: LFM =

∑3
l=1 ||Dl(x) −

Dl(G(x))||1.

• Reconstruction Loss in the face region. Using the
segmentation mask of the face region which are then
used to employ additional reconstruction losses in that
area in order to force the network to estimate more
photo-realistic faces and fix artifacts around the eyes
and the mouth.

C.1.3 Results

Expanding Figure 4 from the main paper, we present several
more results of re-rendered people in 3. It shows that even
before re-rendering (column 6) novel views demonstrate a
decent level of details including textile patterns, hairstyles
and fingers. Neural re-rendering helps to get rid of occa-
sional artifacts, smooth out the final result and indicate even
more fine-grained details.

C.2. Appearance swapping

Additionally to generating people in novel views and/or
poses, our approach allows to redress people providing ren-
ders of them in different clothes. Using BodyMap estimates
as a mapping function, we show several examples of appear-
ance swapping in Figure 4.



Figure 3. Novel view synthesis results before and after neural re-rendering (NR).

Figure 4. Applications on virtual dressing and motion imitation: given a single RGB image and a variety of target poses our method
can dress the target subjects with the input hoodie at different poses with the hands being potentially occluded while preserving fine-level
details. Our approach also generates photorealistic renders of the input human given target images of other people with different poses and
viewpoints. Our method has not been trained specifically for any of these tasks but it can still generalize and produce crisp results.
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