# Supplementary Material for: Adaptive SVM+: Learning with Privileged Information for Domain Adaptation 

Nikolaos Sarafianos Michalis Vrigkas Ioannis A. Kakadiaris<br>Computational Biomedicine Lab, University of Houston<br>\{nsarafia, mvrigkas, ikakadia\}@central.uh.edu

Inspired by the brilliant introduction of Razavian et al. [5], we present the intuition behind our proposed approach as a discussion between a student filled with questions and an intelligent teacher. We then provide complete results on the Animals with Attributes [2] and INTERACT [1] datasets.

## 1. A Discussion between an intelligent teacher and a student on Adaptive SVM+

Student: There are so many learning paradigms out there that work great for classification and recognition tasks. Why do we need to distill privileged information in their learning process?
Teacher: Learning frameworks that address visual recognition tasks have been indeed around for decades. However, the LUPI paradigm by Vapnik and Vashist [8] deviated from what was available until then. Instead of feeding the training process with tuples of features and labels it required as an input triplets comprising also privileged information. Today, more than ever, that data is everywhere, auxiliary information can help train better and more robust models that may exhibit a better generalization over unseen examples.
Student: And why do we need Adaptive SVM+? Why are existing methods [3, 9, 7, 4] not sufficient?
Teacher: First, there are not that many methods that employ privileged information for visual recognition. Most of the state of the art utilizes privileged information as information originating from a single source. For example, in domain adaptation we leverage the knowledge obtained in the source domain to a new target domain of different distribution and possibly largely unlabeled. In the LUPI paradigm [8], as it was initially introduced, we exploit additional features (i.e., $\mathcal{X}^{*}$ ) to learn a better classifier. Adaptive SVM+ is the first method that aspires to combine both the knowledge distillation concept of domain adaptation and the addition of a privileged set of features in the training process. Student: When should I use Adaptive SVM+?
Teacher: To make things easier let's assume that SVMbased methods are the only option at hand, although other

Table 1. In a scenario in which SVM-based classifiers are the only option, we describe which method to use on the source and target domains depending on whether privileged information is available or not.

| Is Privileged Information Available? |  | Which Method to Use? |  |
| :---: | :---: | :---: | :---: |
| Source | Target | Source | Target |
| No | No | SVM | Adaptive SVM |
| Yes | No | SVM+ | Adaptive SVM |
| No | Yes | SVM | Adaptive SVM+ |
| Yes | Yes | SVM+ | Adaptive SVM+ |

classifiers such as Naive Bayes or decision trees are all valid options [10]. Depending on whether privileged information is available in the source and target domains, a break-down of different cases is depicted in Table 1.
Student: But it is 2017 and great deep learning papers are popping up on arxiv one after the other. Why bother with SVM-based methods?
Teacher: The fact that there has been significant progress using deep learning in the past few years does not mean that traditional machine learning techniques should not still be developed and benchmarked. When a plethora of data is available, or when pre-trained deep learning models do exist, then it is almost certain that after setting up some baselines, a deep learning based technique is the way to go. However, in cases where datasets are small, and the nature/distribution of the data is completely different from the datasets that the available pre-trained models were trained on, then machine learning approaches that propose frameworks to utilize auxiliary knowledge can be very helpful. With that in mind, approaches which aspire to address such challenges [3, 9, 7, 4], as well as the proposed Adaptive SVM+, may be considered as a powerful additional machine learning tool in the hands of the researchers.

## 2. Complete Results on the AwA and INTERACT datasets

In Figure 1 we present the difference in the performance between the best method and the rest in terms of average


Figure 1. Differences between the performance of the winning method against the average accuracy over the rest of the available methods. The y-axis represents the difference in terms of AP on the AwA dataset (left) and classification accuracy (right). Each bar at the x-axis corresponds to the respective classification task.
precision and classification accuracy for the AwA and the INTERACT datasets respectively. In both cases, using the exact same features and evaluation protocol, our method achieves state-of-the-art results. For example in the AwA dataset, Adaptive SVM+ is better than the rest in 21 out of 45 tasks (Figure $1-l e f t$ ), 13 of which are statistically significant over the second best method (z-test). For the rest of the methods, LMIBPI [4] achieved higher AP 15 times, RankTr [7] 5, and LIR [9] 4 times.

In Tables 2, 3 we provide complete results (along with statistical significance tests) of the performance of Adaptive SVM+ against the rest of the methods.

## References

[1] S. Antol, L. Zitnick, and D. Parikh. Zero-shot learning via visual abstraction. In ECCV, 2014. 1, 4
[2] C. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3):453-465, 2014. 1, 3
[3] M. Lapin, M. Hein, and B. Schiele. Learning using privileged information: SVM+ and weighted SVM. Neural Networks, 53:95-108, 2014. 1
[4] S. Motiian, M. Piccirilli, D. Adjeroh, and G. Doretto. Information bottleneck learning using privileged information for visual recognition. In CVPR, 2016. 1, 2, 3
[5] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-shelf: an astounding baseline for recognition. In CVPR, 2014. 1
[6] V. Sharmanska and N. Quadrianto. Learning from the mistakes of others: Matching errors in cross-dataset learning. In CVPR, 2016. 4
[7] V. Sharmanska, N. Quadrianto, and C. Lampert. Learning to rank using privileged information. In ICCV, 2013. 1, 2, 3
[8] V. Vapnik and A. Vashist. A new learning paradigm: Learning using privileged information. Neural Networks, 22(5):544-557, 2009. 1, 3
[9] Z. Wang and Q. Ji. Classifier learning with hidden information. In CVPR, 2015. 1, 2, 3
[10] J. Yang, R. Yan, and A. Hauptmann. Cross-domain video concept detection using adaptive SVMs. In ACM MM, 2007. 1,3

Table 2. Complete mean AP and standard error results over 20 train/test splits on the Animals with Attributes dataset [2]. Similar to the rest of the methods, we used 50 and 200 samples per class for training and testing respectively along with a linear kernel. Results for an RBF kernel are not depicted, since Motiian et al. [4] demonstrated that switching to a non-linear kernel does not improve the performance. Results highlighted with light purple indicate statistically significant improvement over the second best method using the z-test.

|  | Animals | SVM | Adaptive SVM [10] | SVM+ [8] | RankTr [7] | LIR [9] | LMIBPI [4] | Adaptive SVM+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Chimpanzee versus Giant panda | $87.69 \pm 0.70$ | $90.43 \pm 0.48$ | $89.49 \pm 0.66$ | $89.33 \pm 0.50$ | $88.28 \pm 0.47$ | $88.32 \pm 0.33$ | $\mathbf{9 0 . 5 1} \pm \mathbf{0 . 4 3}$ |
| 2 | Chimpanzee versus Leopard | $93.75 \pm 0.16$ | $92.15 \pm 0.39$ | $93.62 \pm 0.28$ | $93.70 \pm 0.23$ | $93.36 \pm 0.15$ | $94.05 \pm 0.10$ | $95.06 \pm 0.25$ |
| 3 | Chimpanzee vs. Persian cat | $89.98 \pm 0.41$ | $89.65 \pm 0.40$ | $90.78 \pm 0.45$ | $91.00 \pm 0.39$ | $91.59 \pm 0.40$ | $90.76 \pm 0.19$ | $91.73 \pm 0.31$ |
| 4 | Chimpanzee vs. Pig | $85.24 \pm 0.54$ | $85.24 \pm 0.45$ | $87.36 \pm 0.38$ | $86.08 \pm 0.43$ | $83.74 \pm 0.35$ | $87.32 \pm 0.17$ | $87.36 \pm 0.41$ |
| 5 | Chimpanzee vs. Hippopotamus | $86.51 \pm 0.49$ | $87.13 \pm 0.46$ | $87.42 \pm 0.49$ | $86.92 \pm 0.45$ | $89.63 \pm 0.31$ | $\mathbf{9 0 . 2 1} \pm \mathbf{0 . 1 2}$ | $89.34 \pm 0.62$ |
| 6 | Chimpanzee vs. Humpback whale | $97.85 \pm 0.14$ | $97.85 \pm 0.31$ | $97.98 \pm 0.19$ | $98.08 \pm 0.18$ | $\mathbf{9 8 . 3 0} \pm \mathbf{0 . 1 6}$ | $97.76 \pm 0.26$ | $97.98 \pm 0.14$ |
| 7 | Chimpanzee vs. Raccoon | $87.10 \pm 0.32$ | $84.59 \pm 0.67$ | $86.63 \pm 0.34$ | $87.07 \pm 0.48$ | $85.90 \pm 0.63$ | $88.21 \pm 0.27$ | $88.46 \pm 0.47$ |
| 8 | Chimpanzee vs. Rat | $84.75 \pm 0.64$ | $85.86 \pm 0.40$ | $85.31 \pm 0.53$ | $86.67 \pm 0.56$ | $85.43 \pm 0.48$ | $85.31 \pm 0.29$ | $\mathbf{8 8 . 2 1} \pm 0.41$ |
| 9 | Chimpanzee vs. Seal | $92.38 \pm 0.29$ | $89.88 \pm 0.40$ | $92.17 \pm 0.34$ | $91.54 \pm 0.43$ | $92.78 \pm 0.42$ | $\mathbf{9 3 . 1 1} \pm \mathbf{0 . 2 3}$ | $92.46 \pm 0.29$ |
| 10 | Giant panda vs. Leopard | $92.51 \pm 0.29$ | $94.42 \pm 0.21$ | $93.02 \pm 0.38$ | $93.76 \pm 0.29$ | $92.81 \pm 0.48$ | $92.95 \pm 0.20$ | $\mathbf{9 4 . 2 2} \pm 0.40$ |
| 11 | Giant panda vs. Persian cat | $93.03 \pm 0.49$ | $94.06 \pm 0.40$ | $93.20 \pm 0.45$ | $92.57 \pm 0.43$ | $93.75 \pm 0.29$ | $92.82 \pm 0.32$ | 95.04 $\pm 0.26$ |
| 12 | Giant panda vs. Pig | $86.23 \pm 0.46$ | $86.23 \pm 0.50$ | $85.83 \pm 0.34$ | $86.22 \pm 0.52$ | $84.19 \pm 0.69$ | $86.71 \pm \mathbf{0 . 4 0}$ | $85.83 \pm 0.46$ |
| 13 | Giant panda vs. Hippopotamus | $89.58 \pm 0.41$ | $92.78 \pm 0.36$ | $89.23 \pm 0.30$ | $90.89 \pm 0.36$ | $91.27 \pm 0.35$ | $91.12 \pm 0.29$ | $\mathbf{9 3 . 1 5} \pm 0.36$ |
| 14 | Giant panda vs. Humpback whale | $98.72 \pm 0.15$ | $98.72 \pm 0.18$ | $98.31 \pm 0.19$ | $98.53 \pm 0.15$ | $98.67 \pm 0.11$ | $\mathbf{9 8 . 8 2} \pm \mathbf{0 . 1 4}$ | $98.31 \pm 0.23$ |
| 15 | Giant panda vs. Raccoon | $87.66 \pm 0.58$ | $90.99 \pm 0.38$ | $88.84 \pm 0.49$ | $88.66 \pm 0.60$ | $86.90 \pm 0.74$ | $89.21 \pm 0.30$ | $90.99 \pm 0.42$ |
| 16 | Giant panda vs. Rat | $88.04 \pm 0.46$ | $91.05 \pm 0.20$ | $89.66 \pm 0.46$ | $87.53 \pm 0.51$ | $88.76 \pm 0.37$ | $89.13 \pm 0.25$ | $\mathbf{9 1 . 8 2} \pm \mathbf{0 . 3 6}$ |
| 17 | Giant panda vs. Seal | $91.99 \pm 0.31$ | $92.35 \pm 0.44$ | $90.43 \pm 0.31$ | $92.40 \pm 0.40$ | $93.32 \pm 0.31$ | $\mathbf{9 3 . 8 1} \pm \mathbf{0 . 1 9}$ | $93.37 \pm 0.35$ |
| 18 | Leopard vs. Persian cat | $94.25 \pm 0.28$ | $94.45 \pm 0.28$ | $95.03 \pm 0.27$ | $95.26 \pm 0.25$ | $95.26 \pm 0.22$ | $94.97 \pm 0.22$ | $\mathbf{9 5 . 4 1} \pm \mathbf{0 . 2 2}$ |
| 19 | Leopard vs. Pig | $87.67 \pm 0.30$ | $87.67 \pm 0.41$ | $87.83 \pm 0.33$ | $88.90 \pm 0.28$ | $85.34 \pm 0.50$ | $87.31 \pm 0.21$ | $87.83 \pm 0.43$ |
| 20 | Leopard vs. Hippopotamus | $92.96 \pm 0.37$ | $94.13 \pm 0.28$ | $93.31 \pm 0.29$ | $92.86 \pm 0.26$ | $92.54 \pm 0.28$ | $92.71 \pm 0.16$ | $94.48 \pm 0.27$ |
| 21 | Leopard vs. Humpback whale | $98.68 \pm 0.18$ | $98.68 \pm 0.16$ | $98.97 \pm 0.18$ | $98.63 \pm 0.23$ | $98.83 \pm 0.11$ | $98.61 \pm 0.26$ | $98.97 \pm 0.14$ |
| 22 | Leopard vs. Raccoon | $77.70 \pm 0.57$ | $80.44 \pm 0.71$ | $79.42 \pm 0.58$ | $79.84 \pm 0.59$ | $81.31 \pm 0.67$ | $80.12 \pm 0.22$ | $\mathbf{8 2 . 2 4} \pm \mathbf{0 . 7 2}$ |
| 23 | Leopard vs. Rat | $89.07 \pm 0.35$ | $90.64 \pm 0.27$ | $89.32 \pm 0.32$ | $89.27 \pm 0.28$ | $89.93 \pm 0.28$ | $90.13 \pm 0.21$ | $\mathbf{9 0 . 7 5} \pm 0.37$ |
| 24 | Leopard vs. Seal | $93.60 \pm 0.38$ | $93.58 \pm 0.30$ | $94.03 \pm 0.42$ | $94.30 \pm 0.36$ | $94.12 \pm 0.21$ | $\mathbf{9 5 . 1 8} \pm \mathbf{0 . 3 3}$ | $93.72 \pm 0.32$ |
| 25 | Persian cat vs. Pig | $81.32 \pm 0.41$ | $81.32 \pm 0.47$ | $82.01 \pm 0.44$ | $81.68 \pm 0.46$ | $\mathbf{8 2 . 6 0} \pm \mathbf{0 . 5 8}$ | $82.27 \pm 0.24$ | $82.01 \pm 0.32$ |
| 26 | Persian cat vs. Hippopotamus | $92.79 \pm 0.20$ | $92.22 \pm 0.35$ | $91.73 \pm 0.35$ | $92.82 \pm 0.30$ | $92.00 \pm 0.49$ | $92.38 \pm 0.32$ | $\mathbf{9 3 . 0 9} \pm \mathbf{0 . 3 7}$ |
| 27 | Persian cat vs. Humpback whale | $95.71 \pm 0.30$ | $94.60 \pm 0.46$ | $96.49 \pm 0.31$ | $95.84 \pm 0.30$ | $97.36 \pm 0.15$ | $\mathbf{9 7 . 4 2} \pm \mathbf{0 . 2 5}$ | $96.49 \pm 0.31$ |
| 28 | Persian cat vs. Raccoon | $90.70 \pm 0.41$ | $89.72 \pm 0.49$ | $91.55 \pm 0.28$ | $90.38 \pm 0.39$ | $\mathbf{9 1 . 7 2} \pm \mathbf{0 . 3 4}$ | $91.24 \pm 0.18$ | $90.93 \pm 0.67$ |
| 29 | Persian cat vs. Rat | $68.99 \pm 0.66$ | $72.05 \pm 0.63$ | $68.04 \pm 0.84$ | $69.07 \pm 0.48$ | $69.62 \pm 0.84$ | $70.49 \pm 0.45$ | $69.89 \pm 0.59$ |
| 30 | Persian cat vs. Seal | $86.38 \pm 0.45$ | $85.68 \pm 0.44$ | $86.23 \pm 0.47$ | $85.66 \pm 0.49$ | $88.38 \pm 0.44$ | $\mathbf{8 8 . 4 1} \pm \mathbf{0 . 3 6}$ | $85.67 \pm 0.50$ |
| 31 | Pig vs. Hippopotamus | $74.39 \pm 0.65$ | $74.39 \pm 0.70$ | $76.57 \pm 0.47$ | $75.57 \pm 0.58$ | $77.75 \pm 0.51$ | $73.42 \pm 0.12$ | $76.57 \pm 0.53$ |
| 32 | Pig vs. Humpback whale | $95.79 \pm 0.40$ | $95.79 \pm 0.22$ | $95.70 \pm 0.29$ | $95.93 \pm 0.37$ | $96.85 \pm 0.18$ | $95.93 \pm 0.12$ | $95.70 \pm 0.36$ |
| 33 | Pig vs. Raccoon | $78.65 \pm 0.88$ | $78.65 \pm 0.76$ | $79.68 \pm 0.65$ | $79.13 \pm 0.63$ | $81.61 \pm 0.71$ | $\mathbf{8 2 . 1 9} \pm \mathbf{0 . 1 5}$ | $79.68 \pm 0.67$ |
| 34 | Pig vs. Rat | $70.10 \pm 0.69$ | $70.10 \pm 0.64$ | $70.48 \pm 0.55$ | $70.77 \pm 0.73$ | $72.47 \pm 0.55$ | $73.31 \pm 0.25$ | $70.48 \pm 0.60$ |
| 35 | Pig vs. Seal | $76.74 \pm 0.67$ | $76.74 \pm 0.65$ | $79.71 \pm 0.65$ | $79.26 \pm 0.77$ | $82.61 \pm 0.55$ | $\mathbf{8 3 . 1 1} \pm \mathbf{0 . 4 3}$ | $79.71 \pm 0.59$ |
| 36 | Hippopotamus vs. Humpback whale | $91.31 \pm 0.69$ | $91.31 \pm 0.62$ | $90.42 \pm 0.62$ | $\mathbf{9 2 . 1 7} \pm 0.44$ | $91.08 \pm 0.63$ | $90.11 \pm 0.28$ | $90.42 \pm 0.54$ |
| 37 | Hippopotamus vs. Raccoon | $85.72 \pm 0.43$ | $85.35 \pm 0.43$ | $87.05 \pm 0.51$ | $\mathbf{8 5 . 8 4} \pm 0.70$ | $85.72 \pm 0.63$ | $84.46 \pm 0.36$ | $84.10 \pm 0.61$ |
| 38 | Hippopotamus vs. Rat | $83.20 \pm 0.53$ | $89.73 \pm 0.54$ | $84.31 \pm 0.36$ | $85.62 \pm 0.48$ | $85.91 \pm 0.48$ | $86.11 \pm 0.26$ | $\mathbf{9 0 . 4 1} \pm \mathbf{0 . 2 1}$ |
| 39 | Hippopotamus vs. Seal | $67.86 \pm 0.86$ | $70.19 \pm 0.68$ | $68.23 \pm 0.94$ | $\mathbf{7 0 . 8 3} \pm \mathbf{0 . 7 9}$ | $69.79 \pm 0.70$ | $70.49 \pm 0.41$ | $70.45 \pm 0.88$ |
| 40 | Humpback whale vs. Raccoon | $96.98 \pm 0.24$ | $96.98 \pm 0.21$ | $97.46 \pm 0.20$ | $96.90 \pm 0.29$ | $97.34 \pm 0.20$ | $96.97 \pm 0.27$ | $\mathbf{9 7 . 4 6} \pm \mathbf{0 . 1 9}$ |
| 41 | Humpback whale vs. Rat | $94.54 \pm 0.29$ | $94.54 \pm 0.21$ | $94.58 \pm 0.23$ | $94.56 \pm 0.22$ | $92.95 \pm 0.68$ | $93.89 \pm 0.19$ | $\mathbf{9 4 . 5 8} \pm \mathbf{0 . 2 2}$ |
| 42 | Humpback whale vs. Seal | $84.04 \pm 0.55$ | $84.04 \pm 0.50$ | $84.37 \pm 0.66$ | $84.81 \pm 0.38$ | $85.91 \pm 0.57$ | $\mathbf{8 6 . 1 3} \pm \mathbf{0 . 1 7}$ | $84.37 \pm 0.68$ |
| 43 | Raccoon vs. Rat | $78.26 \pm 0.48$ | $82.45 \pm 0.43$ | $78.34 \pm 0.46$ | $78.61 \pm 0.72$ | $80.00 \pm 0.57$ | $79.63 \pm 0.14$ | $\mathbf{8 2 . 9 8} \pm \mathbf{0 . 4 9}$ |
| 44 | Raccoon vs. Seal | $90.49 \pm 0.46$ | $91.50 \pm 0.44$ | $91.61 \pm 0.31$ | $91.51 \pm 0.40$ | $89.21 \pm 0.43$ | $\mathbf{9 1 . 6 3} \pm \mathbf{0 . 3 6}$ | $89.19 \pm 0.48$ |
| 45 | Rat vs. Seal | $78.60 \pm 0.45$ | $73.87 \pm 0.69$ | $75.72 \pm 0.75$ | $\mathbf{7 9 . 8 8} \pm \mathbf{0 . 6 9}$ | $79.02 \pm 0.50$ | $79.21 \pm 0.28$ | $78.39 \pm 0.99$ |
|  | Average | 87.32 | 87.87 | 87.72 | 87.93 | 88.13 | 88.39 | 88.66 |

Table 3. Complete mean classification accuracy and standard error results over 20 train/test splits on the INTERACT dataset [1]. Results highlighted with light purple indicate statistically significant improvement over the SVM MMD [6] method using the z-test.

|  | Interaction | SVM Images | Adaptive SVM | SVM+ | SVM MMD [6] | Adaptive SVM+ <br> (Linear Kernels) | Adaptive SVM+ (RBF Kernels) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | carrying | $96.07 \pm 0.47$ | $95.21 \pm 0.47$ | $97.64 \pm 0.39$ | $97.00 \pm 0.36$ | $\mathbf{9 8 . 3 6} \pm 0.31$ | $97.14 \pm 0.31$ |
| 2 | catching | $82.95 \pm 1.20$ | $80.68 \pm 1.25$ | $83.52 \pm 0.60$ | $\mathbf{8 5 . 9 1} \pm \mathbf{1 . 1 0}$ | $83.07 \pm 1.13$ | $88.18 \pm 1.13$ |
| 3 | pushing | $79.76 \pm 1.27$ | $79.52 \pm 1.32$ | $80.89 \pm 1.00$ | $79.19 \pm 1.17$ | $83.06 \pm 1.27$ | $83.31 \pm 1.27$ |
| 4 | pulling | $63.47 \pm 1.22$ | $65.40 \pm 0.86$ | $66.53 \pm 1.08$ | $66.85 \pm 1.62$ | $66.97 \pm 1.14$ | $70.89 \pm 1.14$ |
| 5 | reaching for | $67.00 \pm 1.00$ | $66.83 \pm 0.79$ | $66.42 \pm 1.14$ | $68.92 \pm 1.49$ | $71.58 \pm 1.26$ | $76.00 \pm 1.26$ |
| 6 | jumping over | $93.27 \pm 0.76$ | $91.92 \pm 0.76$ | $91.06 \pm 0.87$ | $90.67 \pm 1.02$ | $93.85 \pm 0.93$ | $94.04 \pm 0.93$ |
| 7 | hitting | $83.33 \pm 0.90$ | $83.06 \pm 0.79$ | $84.54 \pm 0.83$ | $84.17 \pm 0.88$ | $85.09 \pm 1.02$ | $85.56 \pm 1.02$ |
| 8 | kicking | $91.58 \pm 0.66$ | $92.25 \pm 0.77$ | $92.14 \pm 0.70$ | $92.33 \pm 0.68$ | $92.42 \pm 0.71$ | $92.33 \pm 0.71$ |
| 9 | elbowing | $85.68 \pm 1.08$ | $85.11 \pm 1.03$ | $83.86 \pm 1.36$ | $86.02 \pm 1.01$ | $\mathbf{8 6 . 5 9} \pm \mathbf{1 . 2 0}$ | $89.20 \pm 1.20$ |
| 10 | tripping | $87.80 \pm 0.79$ | $86.82 \pm 1.04$ | $\mathbf{8 9 . 0 9} \pm \mathbf{0 . 7 7}$ | $86.74 \pm 0.88$ | $86.52 \pm 0.88$ | $89.70 \pm 0.88$ |
| 11 | waving at | $70.76 \pm 1.20$ | $70.87 \pm 1.27$ | $69.13 \pm 1.37$ | $68.15 \pm 1.66$ | $73.91 \pm 1.45$ | $76.30 \pm 1.45$ |
| 12 | pointing at | $76.47 \pm 1.03$ | $76.72 \pm 1.08$ | $73.36 \pm 1.29$ | $74.74 \pm 1.06$ | $\mathbf{8 0 . 5 2} \pm \mathbf{1 . 0 6}$ | $85.69 \pm 1.06$ |
| 13 | pointing away from | $66.25 \pm 1.52$ | $66.25 \pm 1.10$ | $68.00 \pm 1.50$ | $\mathbf{6 8 . 5 0} \pm \mathbf{1 . 9 7}$ | $65.63 \pm 1.07$ | $73.63 \pm 1.07$ |
| 14 | looking at | $65.16 \pm 1.60$ | $65.97 \pm 1.06$ | $66.69 \pm 1.46$ | $66.45 \pm 1.05$ | $68.63 \pm 1.15$ | $76.61 \pm 1.15$ |
| 15 | looking away from | $72.11 \pm 1.14$ | $73.44 \pm 1.15$ | $73.83 \pm 1.23$ | $73.05 \pm 0.96$ | $74.38 \pm 1.38$ | $78.59 \pm 1.38$ |
| 16 | laughing at | $72.73 \pm 1.32$ | $74.61 \pm 1.01$ | $72.19 \pm 0.97$ | $74.30 \pm 0.95$ | $76.48 \pm 1.11$ | $81.17 \pm 1.11$ |
| 17 | laughing with | $80.10 \pm 1.36$ | $81.04 \pm 1.09$ | $79.69 \pm 1.11$ | $79.38 \pm 1.20$ | $82.29 \pm 1.48$ | $86.88 \pm 1.48$ |
| 18 | hugging | $88.28 \pm 0.94$ | $87.81 \pm 0.95$ | $87.98 \pm 1.06$ | $87.97 \pm 0.97$ | $\mathbf{8 8 . 5 2} \pm \mathbf{0 . 9 0}$ | $86.80 \pm 0.90$ |
| 19 | wrestling with | $90.68 \pm 0.89$ | $90.80 \pm 0.73$ | $\mathbf{9 2 . 1 6} \pm \mathbf{1 . 0 1}$ | $90.45 \pm 0.61$ | $90.68 \pm 0.80$ | $91.36 \pm 0.80$ |
| 20 | dancing with | $80.88 \pm 0.95$ | $82.94 \pm 1.06$ | $84.26 \pm 0.83$ | $84.41 \pm \mathbf{0 . 6 0}$ | $84.12 \pm 0.96$ | $88.09 \pm 0.96$ |
| 21 | holding hands with | $86.82 \pm 1.06$ | $85.08 \pm 0.96$ | $86.37 \pm 0.85$ | $86.45 \pm 0.80$ | $\mathbf{8 6 . 9 4} \pm \mathbf{0 . 9 3}$ | $88.31 \pm 0.93$ |
| 22 | shaking hands with | $95.78 \pm 0.69$ | $90.09 \pm 0.94$ | $96.12 \pm 0.44$ | $96.55 \pm 0.47$ | $94.83 \pm 0.49$ | $95.43 \pm 0.49$ |
| 23 | talking with | $75.07 \pm 1.09$ | $78.60 \pm 1.18$ | $77.43 \pm 1.34$ | $81.91 \pm 0.91$ | $81.69 \pm 0.75$ | $83.97 \pm 0.75$ |
| 24 | arguing with | $84.48 \pm 0.90$ | $83.97 \pm 0.98$ | $81.81 \pm 1.09$ | $85.00 \pm 0.75$ | $\mathbf{8 5 . 1 7} \pm \mathbf{0 . 9 2}$ | $88.97 \pm 0.92$ |
| 25 | walking with | $92.61 \pm 0.89$ | $91.82 \pm 1.00$ | $92.50 \pm 0.68$ | $93.75 \pm 0.75$ | $89.20 \pm 1.11$ | $94.89 \pm 1.11$ |
| 26 | running with | $91.00 \pm 0.82$ | $89.33 \pm 0.77$ | $88.75 \pm 0.98$ | $91.08 \pm 0.64$ | $89.50 \pm 0.87$ | $92.17 \pm 0.87$ |
| 27 | crawling with | $83.10 \pm 1.13$ | $\mathbf{8 5 . 3 6} \pm \mathbf{1 . 3 5}$ | $84.17 \pm 1.18$ | $84.76 \pm 1.51$ | $83.57 \pm 1.13$ | $84.40 \pm 1.13$ |
| 28 | jumping with | $\mathbf{8 5 . 9 6} \pm \mathbf{1 . 1 3}$ | $85.19 \pm 1.31$ | $83.27 \pm 1.64$ | $82.88 \pm 1.40$ | $84.42 \pm 1.45$ | $86.73 \pm 1.45$ |
| 29 | walking to | $80.27 \pm 1.25$ | $78.75 \pm 1.20$ | $78.21 \pm 1.08$ | $81.52 \pm 0.92$ | $84.11 \pm \mathbf{1 . 1 0}$ | $80.00 \pm 1.10$ |
| 30 | running to | $76.64 \pm 1.27$ | $76.17 \pm 0.74$ | $78.91 \pm 0.86$ | $77.66 \pm 1.03$ | $78.36 \pm 0.89$ | $78.44 \pm 0.89$ |
| 31 | crawling to | $81.70 \pm 1.27$ | $81.07 \pm 1.17$ | $78.84 \pm 0.69$ | $82.41 \pm 0.79$ | $\mathbf{8 3 . 9 3} \pm \mathbf{1 . 1 5}$ | $83.57 \pm 1.15$ |
| 32 | jumping to | $80.43 \pm 1.21$ | $81.72 \pm 1.09$ | $78.88 \pm 1.30$ | $\mathbf{8 1 . 8 1} \pm \mathbf{1 . 0 4}$ | $81.64 \pm 0.92$ | $82.16 \pm 0.92$ |
| 33 | walking away from | $76.85 \pm 0.98$ | $75.56 \pm 0.84$ | $78.63 \pm 1.14$ | $77.98 \pm 0.97$ | $\mathbf{8 0 . 0 0} \pm \mathbf{1 . 0 1}$ | $78.55 \pm 1.01$ |
| 34 | running away from | $84.38 \pm 1.10$ | $82.95 \pm 1.20$ | $83.75 \pm 0.95$ | $\mathbf{8 5 . 7 1} \pm \mathbf{0 . 9 2}$ | $83.21 \pm 1.11$ | $81.70 \pm 1.11$ |
| 35 | crawling away from | $79.66 \pm 1.47$ | $77.27 \pm 1.04$ | $\mathbf{8 0 . 3 4} \pm \mathbf{1 . 0 7}$ | $80.11 \pm 0.91$ | $79.77 \pm 1.22$ | $82.39 \pm 1.22$ |
| 36 | jumping away from | $81.48 \pm 1.30$ | $82.34 \pm 0.95$ | $85.78 \pm 1.01$ | $85.23 \pm 0.93$ | $85.39 \pm 0.83$ | $85.47 \pm 0.83$ |
| 37 | walking after | $85.40 \pm 1.18$ | $82.70 \pm 1.30$ | $\mathbf{8 8 . 1 0} \pm \mathbf{1 . 3 2}$ | $86.50 \pm 0.85$ | $86.90 \pm 0.87$ | $83.20 \pm 0.87$ |
| 38 | running after | $82.42 \pm 0.85$ | $82.35 \pm 1.13$ | $82.58 \pm 0.85$ | $83.56 \pm 0.81$ | $\mathbf{8 3 . 9 4} \pm \mathbf{1 . 0 9}$ | $80.68 \pm 1.09$ |
| 39 | crawling after | $\mathbf{8 6 . 9 0} \pm \mathbf{1 . 1 5}$ | $86.43 \pm 1.43$ | $86.31 \pm 1.09$ | $85.12 \pm 1.18$ | $83.21 \pm 1.47$ | $85.00 \pm 1.47$ |
| 40 | jumping after | $83.25 \pm 0.95$ | $82.75 \pm 0.79$ | $84.67 \pm 1.00$ | $\mathbf{8 5 . 5 8} \pm 0.68$ | $85.08 \pm 0.85$ | $85.08 \pm 0.85$ |
| 41 | walking past | $80.00 \pm 0.85$ | $79.04 \pm 1.11$ | $80.51 \pm 1.03$ | $\mathbf{8 0 . 5 9} \pm \mathbf{1 . 0 5}$ | $80.22 \pm 0.80$ | $80.59 \pm 0.80$ |
| 42 | running past | $73.44 \pm 0.85$ | $\mathbf{7 5 . 8 6} \pm \mathbf{1 . 1 2}$ | $75.70 \pm 0.91$ | $75.62 \pm 0.81$ | $73.36 \pm 1.10$ | $79.92 \pm 1.10$ |
| 43 | crawling past | $77.02 \pm 1.25$ | $78.41 \pm 1.57$ | $77.62 \pm 1.44$ | $78.10 \pm 0.95$ | $\mathbf{7 8 . 5 7} \pm \mathbf{1 . 4 7}$ | $82.02 \pm 1.47$ |
| 44 | jumping past | $76.02 \pm 1.27$ | $77.50 \pm 1.37$ | $78.06 \pm 1.14$ | $78.61 \pm \mathbf{1 . 5 0}$ | $77.96 \pm 1.27$ | $79.54 \pm 1.27$ |
| 45 | standing next to | $82.28 \pm 1.26$ | $84.13 \pm 1.17$ | $84.13 \pm 1.12$ | $\mathbf{8 6 . 6 3} \pm \mathbf{1 . 0 3}$ | $84.13 \pm 1.07$ | $89.46 \pm 1.07$ |
| 46 | sitting next to | $83.67 \pm 1.02$ | $82.89 \pm 0.87$ | $82.50 \pm 0.94$ | $83.98 \pm 1.07$ | $\mathbf{8 4 . 1 2} \pm \mathbf{0 . 7 5}$ | $86.02 \pm 0.75$ |
| 47 | lying next to | $71.72 \pm 1.22$ | $70.86 \pm 1.22$ | $74.31 \pm 1.32$ | $74.66 \pm 1.05$ | $73.10 \pm 0.93$ | $73.62 \pm 0.93$ |
| 48 | crouching next to | $77.81 \pm 1.51$ | $75.00 \pm 1.50$ | $80.16 \pm 1.73$ | $\mathbf{8 0 . 6 2} \pm \mathbf{0 . 9 3}$ | $78.59 \pm 1.38$ | $80.00 \pm 1.38$ |
| 49 | standing in front of | $69.21 \pm 1.21$ | $70.89 \pm 1.35$ | $69.79 \pm 1.15$ | $71.43 \pm 0.92$ | $71.71 \pm \mathbf{1 . 5 3}$ | $77.93 \pm 1.53$ |
| 50 | sitting in front of | $78.56 \pm 1.01$ | $76.52 \pm 1.15$ | $77.95 \pm 1.02$ | $\mathbf{7 8 . 6 4} \pm \mathbf{1 . 0 8}$ | $77.88 \pm 1.09$ | $80.30 \pm 1.09$ |
| 51 | lying in front of | $80.60 \pm 0.92$ | $80.43 \pm 0.97$ | $81.72 \pm 1.58$ | $81.64 \pm 1.10$ | $\mathbf{8 3 . 0 2} \pm \mathbf{1 . 0 9}$ | $83.10 \pm 1.09$ |
| 52 | crouching in front of | $85.11 \pm 1.08$ | $82.05 \pm 1.58$ | $84.89 \pm 0.93$ | $\mathbf{8 6 . 7 0} \pm \mathbf{1 . 1 6}$ | $82.27 \pm 1.37$ | $87.39 \pm 1.37$ |
| 53 | standing behind | $68.36 \pm 1.53$ | $67.07 \pm 1.25$ | $67.50 \pm 1.12$ | $72.33 \pm 1.11$ | $73.28 \pm \mathbf{1 . 2 3}$ | $79.22 \pm 1.23$ |
| 54 | sitting behind | $89.60 \pm 0.66$ | $90.00 \pm 0.89$ | $90.56 \pm 0.54$ | $88.87 \pm 0.61$ | $90.97 \pm 0.77$ | $89.60 \pm 0.77$ |
| 55 | lying behind | $81.67 \pm 1.04$ | $80.83 \pm 1.13$ | $80.91 \pm 1.06$ | $\mathbf{8 3 . 3 3} \pm \mathbf{1 . 1 0}$ | $80.83 \pm 0.83$ | $84.09 \pm 0.83$ |
| 56 | crouching behind | $77.22 \pm 1.45$ | $73.80 \pm 1.32$ | $76.39 \pm 1.33$ | $78.15 \pm \mathbf{0 . 6 1}$ | $75.46 \pm 1.43$ | $78.98 \pm 1.43$ |
| 57 | standing with | $78.47 \pm 1.05$ | $78.31 \pm 1.09$ | $82.98 \pm 0.85$ | $80.48 \pm 1.24$ | $83.47 \pm 1.09$ | $84.27 \pm 1.09$ |
| 58 | sitting with | $82.08 \pm 1.28$ | $81.31 \pm 1.04$ | $80.00 \pm 1.39$ | $80.36 \pm 1.18$ | $82.14 \pm 1.20$ | $84.40 \pm 1.20$ |
| 59 | lying with | $70.25 \pm 1.31$ | $69.50 \pm 1.40$ | $70.67 \pm 1.30$ | $71.42 \pm 1.31$ | $73.83 \pm 1.25$ | $75.58 \pm 1.25$ |
| 60 | crouching with | $78.80 \pm 1.07$ | $81.41 \pm 1.05$ | $81.30 \pm 1.25$ | $81.74 \pm 1.17$ | $83.80 \pm 0.94$ | $83.50 \pm 0.94$ |
|  | Average | 80.51 | 80.21 | 80.93 | 81.58 | 81.87 | 83.87 |

