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Clothed human modeling plays a crucial role in multimedia research, with applications spanning virtual reality, gaming, and
fashion design. The goal is to learn clothed human dynamics from observations and then generate humans with high-fidelity
clothing details for motion animation. Despite tremendous advancements in clothing shape analysis by existing approaches,
the community still faces challenges in generating convincing visual effects of cloth dynamics, maintaining temporally
smooth clothing details, and handling diverse clothing patterns. To address these challenges, we introduce ClothDiffuse,
a temporal diffusion model that seamlessly integrates three key components into this task: temporal dynamics modeling,
iterative refinement, and diversified generation. Our approach begins by using an encoder to extract high-level temporal
features from input human body motions. These features are combined with a learnable pixel-aligned garment feature,
serving as prior conditions for the shape decoder. The decoder then iteratively denoise Gaussian noise to produce clothing
deformations over time on the input unclothed human bodies. To ensure that the results align with observations and adhere to
physical plausibility for clothing shape inference, we propose two physics-inspired loss functions that preserve the intra-frame
distances and inter-frame forces of clothing points. Additionally, the stochastic nature of the denoising process allows for
the generation of diverse and plausible clothing shapes. Experiments show that our approach outperforms state-of-the-art
methods in chamfer distance and visual effects, particularly for loose clothing such as dresses and skirts. Furthermore, our
approach effectively adapts to out-of-domain clothing types and generate realistic clothes dynamics.

CCS Concepts: • Computing methodologies→ Shape representations; Shape inference; Shape analysis.

Additional Key Words and Phrases: Diffusion Models, Clothed Human Modeling, Cloth Dynamics Generation

1 INTRODUCTION
Clothed human modeling is a vital research area in multimedia, with wide-ranging applications spanning gaming,
virtual try-ons, digital fashion design, and more.The ability to produce high-fidelity clothed humans is essential for
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creating immersive digital experiences and enhancing user interaction. Specifically, this field focuses on learning
clothed human dynamics from 3D point clouds or meshes of human bodies, enabling the animation of clothed
humans with high-fidelity clothing details based on reference body motions. This task is inherently challenging
due to the wide variety of clothes and human motions. Traditional methods often reply on rigging-and-skinning
techniques [22] or physics-based simulations [32], which require intensive computations and domain expertise
to create simulation-ready 3D assets for clothing shape inference.

In response to these issues, data-driven approaches have emerged as a promising alternative. These approaches
utilize either implicit or explicit shape representations for clothed humans, effectively overcoming the limitations
of traditional methods in shape analysis. Among them, point-based representations [21, 24, 25, 27, 49] have
demonstrated their efficacy in modeling clothed humans, attributed to the efficiency, compactness and topological
flexibility of point clouds. Surface Codec of Articulated Local Elements (SCALE) [24] is the first method applying
the point-based surface representation on human clothes modeling and the following effort; while Power-of-Point
(POP) [27] further demonstrates the ability of a single model for arbitrary clothes types. To address the issue of
varying topology of clothes, First-Implicit-Then-Explicit framework (FITE) [21] is proposed to learn an implicit
model to reconstruct a coarse template of clothes and then add explicit pose-dependent deformation. A similar
idea is also employed in Skinned Refined Template-free approach (SkiRT) [25] that introduces a coarse-to-fine
process. A following approach, Clothed humans on a continuous Surface with Explicit Template (CloSET) [49],
learns pose features on a body surface to tackle the discontinuity of the UV map used in [24, 27]. Previous work,
Dynamic Point Field (DPF) [35], models dynamic surfaces with a point-based representation of clothed humans.

Although existing approaches have made promising advancements, there are still unsolved challenges in this
research field.The first challenge resides in the dynamics modeling, where the clothing deformations are supposed
to be natural and smooth, both spatially and temporally, when people perform various actions. However, most
existing learning-based approaches [8, 9, 21, 24, 25, 27, 39, 49] focus on the clothing deformations associated
with static body poses only, ignoring the underlying correlation and continuity of clothing dynamics in a motion
sequence. Although DPF [35] considers dynamics in the canonical surface reconstruction, it treats each frame
separately without considering the explicit dynamics during inference, i.e., during the reference motion animation.
The second challenge lies in the lack of high-fidelity details, i.e., clothes wrinkles. Earlier work adopts either a one-
step end-to-end strategy [27, 35, 39, 49], or a two-step coarse-to-fine pipeline [21, 25] to solve this challenging task
at different scales and levels of granularity. As such, they fail to fully exploit the benefits of iterative refinement
in their model design. The third challenge is the lack of diversity in the results, which contradicts real-world
observations. In reality, similar outfits in similar poses can result in different clothing patterns due to variations
in motion context. For example, when an individual is walking forward or backward, they may present the
same pose, but the clothing patterns can differ significantly. Existing methods [21, 25, 27, 35, 39, 49] are mostly
deterministic, predicting clothing deformations based on a single pose, which limits their ability to account for
the full range of variations that occur with specific outfits and motions.

To address these challenges, we propose ClothDiffuse, a temporal diffusion model that learns clothing dynamics
to generate high-fidelity clothed humans in a given reference motion. Our key insight is to develop a framework
that integrates three critical factors: dynamics modeling, iterative refinement, and diversified generation. Specifically,
we use a sequence of unclothed human bodies, such as SMPL body shapes, as the input reference motion. The
explicit dynamic features of vertices on these bodies, including 3D positions, velocities, and accelerations, are
mapped to UV positional maps and then processed through a 3D CNN to encode high-level dynamic features
of the motion sequence. In addition, we use a learnable tensor to encode pixel-aligned garment features. With
these dynamic and garment features as prior conditions, a shape decoder iteratively denoises Gaussian noise to
predict clothing wrinkle deformations and normal directions on the input unclothed human bodies over time.
Finally, we obtain point-based clothed humans aligned with the input reference motion. The stochasticity in the
sampling process allows our model to produce diverse yet plausible outcomes during inference. Furthermore, we
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Fig. 1. Scheme Overview of Our Method. Given a reference body motion for animation, our temporal diffusion model
generates point-based high-fidelity clothed humans with enhanced visual effects of clothing details over time through an
iterative reverse denoising process. The stochasticity in this process also allows for diversified generations of clothed humans.
During training, our model learns clothed human dynamics from 3D point clouds or meshes of clothed human bodies, with
physical characteristics enhanced by dedicated loss functions.

propose two physics-inspired losses to enhance the physical characteristics of predicted results, which preserve
the intra-frame distances and inter-frame forces of clothing points, as illustrated in Fig. 1. We conduct extensive
experiments against state-of-the-art methods on three public benchmarks. Our approach outperforms existing
methods and demonstrates a clear advantage in modeling loose clothes.
Our contributions are summarized as follows: (i) We propose ClothDiffuse, a temporal diffusion approach

that learns clothed human dynamics and generates high-fidelity clothing details along with diverse patterns,
showing a clear advantage in modeling loose clothes, e.g., dresses and skirts. (ii) Our framework enhances the
visual effects of clothed human dynamics through physics-inspired losses functions, i.e., modeling cloth dynamics
based on temporal motions and regularizing the intra-frame distances and inter-frame forces of clothing points.
(iii) Comprehensive experiments demonstrate the superior performance of our framework and its applicability to
real-world, unseen outfits and clothes.

2 RELATED WORKS
This section reviews relevant literature in three key areas: clothed human modeling, focusing on dynamic clothing
simulation and animation; diffusion-based generative models, highlighting recent advancements in Artificial
Intelligence Generative Content (AIGC); and physics-inspired losses, which contribute to enhancing the physical
plausibility of generated content.

Clothed Human Modeling. This research field can be divided into two groups based on implicit and explicit
human representations. Implicit representation defines surfaces as the zero level set of an implicit function, often
powered by multi-layer perceptrons (MLPs) to predict occupancy values for any 3D position in continuous camera
space. This approach, free from pre-defined templates, can model diverse, complex topologies and is widely used
in human reconstruction [7, 12, 18, 30, 31, 38, 41, 47] and clothes modeling [6, 8, 28, 39, 44, 45, 50]. Most existing
methods [6, 8, 12, 28, 39, 44] reconstruct clothed humans in a canonical space and animate them with predicted
skinning weights and pose-aware deformations, while some others [18, 30] use part-based modeling. However,
implicit representations [21, 27, 49] face cubic time computation costs when reconstructing explicit surfaces from
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high-resolution volumes. In contrast, we use a point-based explicit representation, which is both compact and
topologically flexible, avoiding the need for intensive computation. (ii) Explicit representation in clothes modeling
typically uses a mesh-based template. Although robust and efficient, this approach is limited by its ability to
generalize across diverse topologies and requires registration or canonization of raw scans. [4, 5, 17, 20, 43].
In contrast, point-based representations offer both compactness and support for arbitrary topologies. Early
methods [13] generated sparse point sets for 3D object reconstruction, while later approaches [1, 11] structured
point clouds into patches representing 2D UV maps, enabling dense surface geometry modeling. POP [27]
demonstrated the ability to model pose-dependent clothing deformations using point clouds, handling various
clothing types with a universal model. Subsequent works like FITE [21] and SkiRT [25] used a coarse-to-
fine strategy, refining a coarse template with pose-dependent deformations. CloSET [49] addressed UV map
discontinuities by directly learning pose-dependent features from the continuous body surface. Additionally,
DPF [35] introduced a dynamic point field model combining explicit point-based representation with implicit
deformation networks to model non-rigid 3D surfaces of clothed humans. Our proposed method differs from
previous works by introducing a temporal diffusion framework with three key operations for this task: dynamics
modeling, iterative refinement, and diversified generation. Temporal sequence offers richer context for robust
dynamics modeling, iterative denoising refinement enhances detail representation, and the diffusion process
enables diverse while natural outputs.
Diffusion-based Generative Model. Our work focuses on diffusion-based generative model, which is a

paradigm based on the stochastic diffusion process and has been successfully applied in class and text-conditioned
image generation [15], super-resolution, inpainting [16, 36, 37], and 3D object generation [34, 48]. Diffusionmodels
work by progressively transforming a simple distribution, like Gaussian noise, into complex data distributions
through a series of learned denoising steps. This iterative approach allows for the generation of highly realistic
images, even in challenging tasks such as super-resolution and inpainting, where fine details must be reconstructed
from partial or low-resolution inputs. In the context of generative clothed human modeling, diffusion models offer
a powerful framework for capturing the intricate details of clothing and human body interactions. For instance,
SMPLicit [10] proposes to learn a latent representation of body shapes and garments, enabling the generation of
clothed humans in 3D space with high fidelity. Similarly, gDNA [6] leverages latent codes to generate detailed 3D
canonical shapes of people in a variety of garments, along with corresponding skinning weights to ensure realistic
deformations during motion. A concurrent work, DiffuStereo [42], introduces diffusion models into an iterative
stereo matching network, demonstrating their capability in high-quality human reconstruction by refining depth
estimates through a series of denoising steps. Unlike previous approaches that apply diffusion-based generative
models to static 2D or 3D tasks, our proposed temporal diffusion model is specifically designed to capture
the dynamics of clothing by denoising displacement changes over an entire temporal sequence, which can be
considered as a 4D generation task. This framework offers a promising solution for complex temporal modeling
tasks, enabling more realistic and consistent clothes modeling across time.

Physics-Inspired Losses. Physics-inspired losses have been pivotal in advancing clothed human modeling by
improving the realism and efficiency of garment simulations. PBNS [2] introduces an unsupervised deep learning
method to learn Pose Space Deformations (PSD) for rigged garments, integrating implicit Physically Based
Simulations (PBS) to generate realistic cloth deformations without requiring extensive PBS data. Additionally,
the approach [3] develops a general framework for neural cloth simulation that disentangles static and dynamic
cloth subspaces, leveraging physics-inspired optimization schemes to enhance model performance and control
motion predictions. However, these methods primarily focus on optimization schemes that minimize energy
constraints to produce final outputs. In contrast, our approach incorporates differentiable physics constraints
directly as loss functions, enabling the training of our end-to-end diffusion models. Additionally, SNUG [40]
extends this by proposing a self-supervised approach that uses physics-based loss terms to train neural networks
for dynamic 3D garment deformations, eliminating the need for ground-truth data and significantly speeding up
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the training process. HOOD [14] employs graph neural networks and hierarchical message-passing to model
clothing dynamics in real-time, effectively handling varying garment topologies and material properties. These
approaches collectively highlight the role of physics-inspired losses in achieving realistic and efficient garment
modeling across different scenarios. In contrast to previous approaches, we embed physics-inspired constraints
directly into our temporal diffusion framework during training, enabling the model to incorporate these physical
principles throughout the generation process. Furthermore, we have designed tailored formulations for our
point-based clothed human representation. This setup enhances the model’s capability to produce physically
consistent, realistic motion for clothing dynamics generation.

3 PRELIMINARY
Temporal Diffusion Models. To be general, we represent x1:#

0 as an # -frame data sample drawn from the true
data distribution. In the forward diffusion process, we add small amount of Gaussian noise to the sample over )
steps, generating a sequence of noisy samples denoted as {x1:#

C })C=1. This process is described by

@(x1:#
C |x1:#

C−1) = N(
√
1 − VCx

1:#
C−1, VC O ), (1)

where the step sizes are controlled by a variance schedule {VC ∈ (0, 1)})C=0 and O represents the identity matrix.
When the number of steps) is sufficiently large, x1:#

)
approaches a normal distribution,N(0, O ). As noted in [15],

for a specific diffusion step C , instead of repeatedly adding noises to x1:#
0 , we can directly derive x1:#

C through

x1:#
C =

√
ŪCx

1:#
0 +

√
1 − ŪC&, & ∼ N(0, O ), (2)

where UC = 1 − VC and ŪC =
∏C

:=0 U: .
The reverse process aims to reconstruct a true data sample from Gaussian noise x1:#

)
∼ N(0, O ), utilizing a

neural model 5) that progressively denoises x1:#
)

over ) steps. This allows us to sample from the learned data
distribution by gradually denoising a standard Gaussian noise. Formally, the process is defined as:

?) (x1:#
C−1 |x1:#

C ) = N(-) (x1:#
C , C, ~), ṼC O ), (3)

where C is the diffusion step, ~ includes prior conditions, such as text, category label and image, and ṼC = 1−ŪC−1
1−ŪC VC .

According to previous work [15, 36], `) (x1:#
C , C, ~) can be estimated in three different ways by defining different

outputs of the neural model 5) (x1:#
C , C, ~) and corresponding loss functions for training:

(1) The output is directly the mean values in Eq. (3), i.e., -) = 5) (x1:#
C , C, ~). Then we have

-) = 5) (x1:#
C , C, ~), (4)

L = EC ∈[1,) ],x1:#
C−1∼@ (x1:#

C−1 ) [‖x
1:#
C−1 − `\ ‖2] . (5)

(2) The output is the sampled Gaussian noise at diffusion step ) , i.e., &̂ = 5) (x1:#
C , C, ~). Then we have

-) =
1

√
UC

(x1:#
C − 1 − UC√

1 − ŪC
&̂), (6)

L = EC ∈[1,) ],&∼N(0,� ) [‖& − &̂ ‖2] . (7)

(3) The output is the denoised sample at diffusion step 0, i.e., x̂1:#
0 = 5) (x1:#

C , C, ~). Then we have

-) =

√
UC (1 − ŪC−1)
1 − ŪC

x1:#
C +

√
ŪC−1 (1 − UC )
1 − ŪC

x̂1:#
0 , (8)

L = EC ∈[1,) ],x1:#
0 ∼@ (x1:#

0 ) [‖x1:#
0 − x̂1:#

0 ‖2] . (9)
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Using the estimated -) , we can draw the denoised sample x̂1:#
C−1 at next diffusion step C − 1 from the Gaussian

distribution, ?) (x1:#
C−1 |x1:#

C ) defined in Eq. (3).

4 METHOD
An overview of our approach is illustrated in Fig. 2. We train a model to learn clothed human dynamics from
a set of sequential 3D point clouds or meshes of human bodies, denoted as \ 1:# = {v1:#8 }"B

8=1, where # is the
number of frames and"B is the number of points in each frame. Similar to prior work [21, 25, 27, 49], we assume
the corresponding fitted or registered unclothed bodies V 1:# are provided, usually represented by SMPL [23] or
SMPL-X [33]. Guided by the learned clothing dynamics, our model takes # consecutive frames of these unclothed
bodies in a reference motion as input and generate the corresponding clothed humans as output.
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Fig. 2. Pipeline of ClothDiffuse: We take # sequential frames of unclothed posed bodies V1:# , such as SMPL bodies,
as input. (i) Dynamic Feature Encoding: The explicit dynamic features of vertex p: on the :-th frame’s body surface
are mapped to the corresponding 2D position u on a UV positional map R:u = p: , generating the input R. A 3D CNN is
then used to extract high-level dynamic features J . (ii) Diffusion-Based Cloth Generation: We use a learnable tensor
M to encode pixel-aligned garment features. M is specific to a particular outfit and is shared across all input motions for
that outfit. Next we sample the respective dynamic features z1:# and garment features g at position u on the UV maps via
bilinear interpolation. Using these features along as prior conditions, a shape decoder progressively denoises Gaussian noise
x̂1:#
)

over ) steps to yield the final prediction x̂1:#0 , which includes cloth wrinkle displacements r̂1:# and normal directions
n̂1:# . Please refer to Sec. 4.3 for further details on training and inference using diffusion-based models. After applying
the local transformations T, we obtain the clothing points v̂1:# for the query points p1:# over time. Finally, by densely
querying the input unclothed bodies, we generate point-based clothed humans with realistic clothing details, represented as

\̂ 1:# = {v̂1:#
8

}"?

8=1.

4.1 Dynamic Feature Encoding
Dynamics Encoder is designed to encode explicit dynamic features of the input body motion sequence. Given
the unclothed bodies V 1:# as input, we first generate the UV positional maps R ∈ R#×�in×,in×9 by mapping the
explicit dynamic features from the query points p1:# ∈ R#×9 on the bodies to the corresponding 2D position
u ∈ R2 on the UV maps. This mapping is represented by R:u = p: , where : is the frame index, ranging from 1 to
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# . The explicit dynamic features include 3D position, velocity, and acceleration. We then feed the UV maps R to
a 3D CNN to extract high-level dynamic features, denoted as J ∈ R#×�×, ×�3 . These features encapsulate the
spatiotemporal variations of the body motion at different levels of granularity.
Existing approaches [21, 25, 27, 49] mainly focus on pose-dependent modeling of clothed humans, often

neglecting the correlation and continuity of dynamic features throughout a body motion sequence. To address this
gap, we propose directly encoding explicit dynamic features. Combined with the physics-inspired losses described
in Sec. 4.3, our approach enhances the modeling of clothed humans with motion dependency. Additionally,
since the UV map of the template body has a fixed topology, the 3D CNN encoder can consistently extract
vertex-aligned motion features, with each vertex p: in every frame mapped to the same position u on the UV
maps across time.

4.2 Diffusion-based Cloth Generation
Shape Decoder is designed to generate point-based clothed humans aligned with the input reference motion. We
use a learnable tensor M ∈ R�×, ×�6 to encode pixel-aligned garment features. M is specific to a particular outfit
and is shared across all input motions for that outfit. During training, it is randomly initialized and optimized in
an auto-encoding manner, similar to [27, 49]. Afterwards, given a query point p1:# on the input unclothed bodies,
we have its corresponding 2D position u on the UV map. Then we sample the corresponding motion-dependent
dynamic features z1:# ∈ R#×�3 from J and the garment feature g ∈ R�< from M at u on each frame. These
features, along with the sampling position u, serve as prior conditions for the diffusion reverse process, denoted
as~ = [z1:# ,g, u]. Note that u is mapped to an embedding vector via a linear layer, following the approach in [15].
Given these conditions, the shape decoder 5\ progressively denoises random Gaussian noise x̂1:#

)
to generate the

cloth wrinkle displacements r1:# ∈ R#×3 and corresponding normal directions n1:# ∈ R#×3 for the query points
p1:# across # frames, summarized as x̂1:#

0 = [r̂1:# , n̂1:# ].
Diffusion denoising process is described as follows. We represent x1:#

0 as the # -frame cloth wrinkle
displacements r̂1:# and normals n̂1:# on the query points p1:# , drawn from the unknown true data distribution.
Following the process in Sec. 3, the forward diffusion process incrementally add a small amount of Gaussian
noise to the sample over ) steps, resulting in a sequence of noisy samples denoted as {x1:#

C })C=1.
The reverse process aims to generate cloth wrinkle displacements and normals x̂1:#

0 on the query points p1:#

from Gaussian noise x1:#
)

∼ N(0, O ). This is achieved through a neural model 5) that progressively denoises x1:#
)

for) steps. As analyzed in Sec. 3, we follow [36], which directly predicts the denoised sample x̂1:#
0 = 5) (x1:#

C , C ;~)
at each step, as this technique has shown to yield superior performance. Hence -) can be obtained by Eq. (8).
Finally, we sample x1:#

C−1 at denoising step C − 1 from the Gaussian distribution ?) (x1:#
C−1 |x1:#

C ) defined in Eq. (3).
Local Transformations are applied to r̂1:# and n̂1:# on the query point p1:# . Following the approach

in [27, 49], we model the predicted clothing deformation r̂1:# on the unclothed body in its canonical pose. This
allows body articulation to account for a significant portion of shape variation, enabling the network to focus on
modeling the remaining shape residuals. For each query point on the unclothed SMPL or SMPL-X body, we use
Linear Blend Skinning (LBS) to calculate its local transformation via barycentric interpolation. Specifically, if the
query point p: on the :-th frame lies on a triangular face with three vertices [p1,p2,p3] and corresponding local
transformations [T1, T2, T3] predefined by SMPL or SMPL-X, the local transformation of p: is then obtained by
barycentric interpolation, defined as

T
: =

3∑
9=1

‖p: − p 9 ‖2 · T 9 . (10)

The final positions of the clothing points v1:# over time can be obtained by

v̂: = T
: · r̂: + p: , (11)
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where : is the frame index.
Finally, by performing dense querying on the input unclothed bodies, we obtain point-based clothed humans

with realistic clothing deformations, represented as \̂ 1:# = {v̂1:#8 }"?

8=1, where"? is the number of query points.

4.3 Training and Inference
Training. We follow the prior work [15, 36] to train our model. The first step is to uniformly sample a diffusion
step C and derive the corresponding noisy sample x1:#

C for each of"? query points, along with the prior conditions
~. Next, we input them into the shape decoder, apply local transformations, and obtain the final outputs, denoted
as (r̂1:# , n̂1:# , v̂1:# ). The total training loss L is defined as

L = _cLc + _nLn + _rLr + _gLg + _dLd + _isoLiso, (12)

where _s are the weights to balance each loss.
Specifically, Lc is the normalized Chamfer Distance that measures the average bi-directional squared distances

between the predicted point clouds \̂ 1:# = {v̂1:#8 }"?

8=1 and ground-truth \ 1:# = {v1:#8 }"B

8=1, which is defined as:

Lc =
1
#

#∑
:=1

L:
c , (13)

L:
c =

1
"B

"B∑
8=1

min
9

‖v:8 − v̂:9 ‖22 +
1
"?

"?∑
9=1

min
8

‖v:8 − v̂:9 ‖22.

Ln is the average !1 distance between the normals of each predicted point and its nearest neighbor in the
ground-truth point clouds:

Ln =
1

#"?

#∑
:=1

"?∑
8=1

‖n̂:8 − n:9 ‖1, (14)

where 9 = argminv:
9
∈\: ‖v̂:8 −v:9 ‖2. Lr and Lg are the regularization of the norm for the predicted displacements

and garment feature respectively, which is described by

Lr =
1

#"?

#∑
:=1

"?∑
8=1

‖ r̂:8 ‖22, Lg =
1

�,�6

‖M‖22. (15)

Additionally, inspired by physics-based cloth simulation, we propose two losses, Ld and Liso, to regularize the
physical plausibility of the outputs, which have not been used in prior work on this task. Ld is the inter-frame
force preserving loss, which assumes points on the clothing in consecutive frames should undergo similar forces,
defined as

Ld =
1

#"?

"?∑
8=1

#−1∑
:=2

‖(v̂:8 − v̂:−18 ) − (v̂:+18 − v̂:8 )‖22, (16)

where the differences in acceleration of predicted points \̂ 1:# = {v̂1:#8 }"?

8=1 across consecutive frames are regular-
ized. Liso is the intra-frame distance preserving loss, originating from [19], which enforces consistent distances
between neighboring points across two consecutive frames, defined as

Liso =
1

#"?

"?∑
8=1

#−1∑
:=1

5∑
9=1

‖(v̂:8 − v̂:9 ) − (v̂:+18 − v̂:+19 )‖22, (17)

where 9 is the index of top-5 nearest neighboring points to point v8 .
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…

…

Shape 
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Diffuse

…

Shape 

Decoder

Shape 

Decoder

Diffuse

Fig. 3. Inference process. Sample from the learned distribution by gradually denoising Gaussian noise N(0, O ) for ) steps
using the shape decoder 5\ and finally yield the denoised sample x̂1:#0 .

Inference. We sample from the learned distribution by iteratively denoising Gaussian noise N(0, O ). As
illustrated in Fig. 3, at denoising step C , given the noisy sample x1:#

C from the previous step as input, the shape
decoder 5\ predicts the denoised sample x̂1:#

0 = 5\ (x1:#
C , C,~). This denoised sample is then diffused to x̂1:#

C−1 using
Eq. (8), which serves as the input for 5\ at the next denoising step C − 1. After ) steps of iterative denoising
process, we obtain the final output x̂1:#

0 .
Our approach offers two main benefits over prior work [21, 25, 27, 35, 49]: (i) Iterative refinement : The sampling

process involves ) steps to achieve the final prediction, imitating the process of iterative refinement usually
seen in artifact creation. As shown in Fig. 4 and 5, our method yields results with more refined clothing details
compared to prior studies that model clothed humans in a single step only. (ii) Diversified cloth generation: Our
approach generates diverse clothed humans, whereas previous techniques are deterministic during inference. The
inherent stochasticity of our sampling process means that each inference produces a varied yet realistic outcome.
This aligns well with the real-world observation that similar outfits in similar poses can present varied clothes
patterns due to different motion context.

4.4 Generalization to Unseen Outfits
Since the garment feature M is unique to a particular outfit and individual, we initialize a set of garment features
for all possible outfits in the training dataset, denoted as Mall. During training, for a sample in a mini-batch, the
corresponding garment feature is selected from Mall in the feedforward process and then updated accordingly.
Each training sample is assigned an index to indicate its associated garment feature.

For a new outfit or individual with limited samples—specifically, a sequence of registered clothed human bodies
represented as point clouds—our approach can still handle this unseen outfit following a scheme similar to [27].
We initialize a new garment feature Mnew for this outfit, and optimize it by minimizing the loss defined in Eq. (12),
keeping the dynamics encoder and shape decoder parameters fixed. When the sequence length is shorter than # ,
loss masks can be applied. The optimized garment feature then captures the characteristics of the unseen outfit,
enabling our model to generate clothed humans in this outfit based on new input reference motion. As shown in
Fig. 6, our approach effectively adapts to out-of-domain garment types and generate realistic dynamics.

ACM Trans. Multimedia Comput. Commun. Appl.

 



10 • Zou et al.

5 EXPERIMENTS
Datasets. We evaluate our method and compare with baselines on three commonly used datasets. ReSynth [27]
is a synthetic dataset with a larger variation in outfit shapes and motions in 13 different outfits. We follow [27]
for training and test sets split. CAPE [26] is a dataset containing clothed human point clouds captured under a
variety of motions in 14 different outfits. We follow [26] to split training and test sets, where test results of 3
subjects (00096, 00215, 03375) are reported due to their most extensive outfit variations. THuman-CloSET [49]
provides more than 2,000 real-world scans of 15 outfits with a large variation in clothing style and poses imitating
those in CAPE with fitted SMPL-X models. Following [49], we use the first 100 poses for training and the rest
for testing. As the dataset comprises only single-frame point clouds rather than sequential ones, our model is
constrained to utilizing single-frame inputs with # = 1. This means that our model on this dataset comes with
diffusion-based iterative refinement, lacking dynamic modeling capability. To avoid data leakage and overfitting,
we split the dataset such that, for the same outfit, some motion groups are included in the training set, while other
distinct motion groups are reserved for the test set. Additionally, all presented results and evaluation metrics are
derived from the test set.

Implementation details. are described as follows.The length of input sequence # is 8 and the input positional
maps are of 128 × 128 resolution. The pose encoder in our model is a 7-layer 3D UNet while the shape decoder
comprises 8-layer MLPs. The input dimension of UV positional maps is # × 128× 128× 9, where # is the number
of temporal frames. The dimension of dynamic feature, as the output of dynamics encoder, is # × 256 × 256 × 64.
Similarly, the garment feature dimension is also 256 × 256 × 64. This means the dynamic and garment feature
sizes, �3 and �6, are both 64. The size of 256 × 256 gives around 43K query points as the final predicted point
clouds of clothed human bodies. We follow [35] to use Lepard keypoint matcher to get the matched points in the
ground truth point clouds for all the query points on the unclothed SMPL or SMPL-X body. Thus we can calculate
x1:#
0 for the training with diffusion models. Note that when only pose-dependent features are considered (i.e.

# = 1), our model has comparable parameters with prior work [27, 49]. We follow [29] to encode displacements
r1:#8 , normals n1:#8 and sampling position u with frequency being 6, as well as diffusion step C with frequency
being 16. For all datasets, 100 diffusion steps and linear variance schedule of V are used. Our model is trained
with uniformly sampled diffusion step for 90 epochs for all datasets on a single A100 GPU. The learning rate is
0.0001 and decays by 0.1 after training for 60 epochs. The batch size for training is 4 for # = 8 and 8 for # = 1.
The weights of the losses are 144, 10, 30, 1, 3, 1 for _c, _n, _r, _g, _d, _iso respectively.
Metrics. Following prior work [25, 27, 49], we report the averaged Chamfer Distance (CD) from Lc and

averaged !1 normal distance (NML) from Ln across all test samples, in units of ×10−4<2 and ×10−1, respectively.
To capture model performance across outfits, especially challenging ones, we list results for each subject and
outfit. In our ablation study, we report Dynamic Errors (DE) from Eq. (16), measuring average acceleration
differences between points across frames, in units of ×10−4. We also evaluate the diversity of generated outcomes
by the standard deviation of point clouds (STD) in ×10−2<, sampling our model 10 times.

5.1 Comparison with State-of-the-Art Methods
We compare our method, ClothDiffuse, with two implicit methods, SCANimate [39] and SNARF [8], and five
closely top-performing point-based methods: SCALE [26], POP [27], SkiRT [25], CloSET [49] and DPF [35].

ReSynth dataset. We present quantitative results in Tab. 1, categorized by different outfits. The results reveal
that all five recent point-based methods outperform the implicit method, SCANimate [39], by a significant
margin. This underscores the advantages of using point cloud representations for clothed human modeling. In
comparison with POP [27], our technique demonstrates consistent improvements in both CD and NML across
most of the evaluated outfits. These enhancements are likely due to our use of dynamics feature encoding and
iterative refinement through a diffusion process. Moreover, our method slightly improves upon the CD and
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Methods

Outfits
anna-001 beatrice-025 christine-027 janett-025 felice-004 carla-004 alexandra-006 eric-035 all
knee dress
short sleeve

knee dress
long sleeve

knee dress
short sleeve

short skirt
long sleeve

long dress
tank top

puffy jacket
long pants

loose blouse
long pants

blazer jacket
long pants -

CD↓ NML↓ CD↓ NML↓ CD↓ NML↓ CD↓ NML↓ CD↓ NML↓ CD↓ NML↓ CD↓ NML↓ CD↓ NML↓ CD↓ NML↓
SCALE [26] - - - - - - - - - - - - - - - - 1.49 1.04
SCANimate [39] 1.34 1.35 0.74 1.33 3.21 1.66 2.81 1.59 20.79 2.94 0.90 1.52 2.28 1.84 2.54 1.94 4.30 1.77
POP [27] 0.62 0.82 0.34 0.75 1.72 0.97 1.24 0.89 7.34 1.24 0.51 1.02 1.71 1.29 1.34 1.16 1.36 1.02
SkiRT [25] 0.58 0.81 0.31 0.77 1.54 0.99 1.10 0.82 6.45 1.25 0.48 1.06 1.51 1.29 1.30 1.17 - -
CloSET [49] - - - - 1.49 0.97 - - 6.01 1.16 0.49 1.04 - - - - - -
DPF [35] 0.96 0.96 0.46 0.99 2.88 1.24 2.51 1.19 16.07 2.50 - - - - - - - -
Ours 0.54 0.81 0.33 0.76 1.30 0.97 1.03 0.81 5.58 1.14 0.47 1.05 1.50 1.29 1.29 1.15 1.13 1.01

Table 1. Quantitative Comparison on ReSynth Dataset Across Diverse Outfits. Our approach surpasses six prior
methods in the majority of outfits, particularly excelling in the challenging long dresses (“felice-004”). The best results are in
bold.

CloSET &

CloSET-meshed

(CVPR’ 23)

Physics Simulation

(Ground-Truth) 

ClothDiffuse & 

ClothDiffuse-meshed

(Ours)

POP &

POP-meshed 

(ICCV’ 21)

FITE 

(ECCV’ 22)

SCANimate 

(CVPR’ 21)

Clothing 

Details

Temporal 

Smoothness

Fig. 4. Qualitative Comparison on ReSynth Dataset. Our approach delivers smooth and realistic details for loose clothes.

NML scores reported by SkiRT [25] for most outfits. Notably, we achieve a 13.4% improvement in CD for the
challenging long dress outfit (“felice-004”), with scores of 5.58 compared to SkiRT’s 6.45. Although SkiRT utilizes
a coarse-to-fine strategy, our results affirm the value of multi-step progressive refinement for challenging outfits.
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Methods
Outfits

blazerlong shortlong all
CD↓ NML↓ CD↓ NML↓ CD↓ NML↓

SCALE [26] 1.07 1.22 0.89 1.12 - -
POP [27] 0.78 1.29 0.57 1.24 0.59 1.11
CloSET [49] 0.71 1.15 0.54 1.09 - -
Ours 0.68 1.12 0.49 1.08 0.54 1.09

Table 2. Quantitative Comparison on CAPE Dataset.
Our approach obtains state-of-the-art performance for the
“blazerlong” and “shortlong” outfits, as well as the average
performance across all outfits. The best results are in bold.

Methods
Outfits

sweater-000 longshirt-001 skirt-005
CD↓ NML↓ CD↓ NML↓ CD↓ NML↓

SCANimate [39] 1.06 1.64 1.42 1.85 1.93 1.74
SNARF [8] 7.11 2.09 6.66 2.21 9.39 2.31
POP [27] 0.76 1.55 1.54 1.83 1.66 1.43
CloSET [49] 0.68 1.48 1.39 1.71 1.49 1.36
Ours 0.66 1.48 1.33 1.70 1.42 1.35

Table 3. Quantitative Comparison on THuman-CloSET
Dataset. Our results are based on the model that uses single-
frame input, as the dataset contains only single-frame point
clouds. The best results are in bold.

Similar observations can be made when contrasting our method with CloSET [49]. While CloSET encodes features
on the continuous body surface instead of UV map, it overlooks the importance of dynamics learning and iterative
refinement in clothed human modeling. The qualitative results depicted in Fig. 4 further demonstrate that our
model can generate clothed humans with smooth and natural clothes wrinkles over time. These results are
notably superior to those from the four pose-dependent baselines [21, 27, 39, 49], highlighting the importance of
dynamics modeling for this task. Moreover, our method produces higher point cloud density in regions where
the clothing is distant from the human body, an improvement attributable to the iterative refinement facilitated
by our diffusion-based framework.

CAPE dataset.The quantitative results are summarized in Tab. 2, which includes the results for the “blazerlong”
and “shortlong” outfits, as well as the average performance across all outfits. Additionally, qualitative results are
illustrated in Fig. 5. When compared to SCALE [26], our method demonstrates substantial improvements for both
listed outfits. The inferiority of SCALE is primarily due to its reliance on low-resolution point clouds. Compared
to POP [27], our technique yields improvements of 8.5% and 1.8% in CD and NML, respectively, when averaged
across all outfits. These gains attest to the efficacy of our dynamic modeling and iterative refinement techniques
for clothed human generation. These factors help our method obtain superior performance over CloSET [49].
THuman-CloSET dataset. Similar trend can be observed from the quantitative results presented in Tab. 3.

While the dataset only provides single-frame point clouds, hence not involving dynamic modeling, our model still
benefits from the iterative refinement via the diffusion generation process when compared with top-performing
methods like POP [27] and CloSET [49].

5.2 Apply to Unseen Outfits
We present the qualitative comparison on unseen real-world outfits in Fig. 6, where the results of our approach,
POP [27] and CloSET [49] are provided. We optimized garment features for each scan and generated clothed
humans in reference motion animation, achieving natural and smooth wrinkles even for unseen loose clothing. It
can be observed that POP shows quite noisy results and fails to model unseen loose dress, while our method gives
smoother and more detailed clothing dynamics. This might attribute to the iterative refinement via denoising
process, as well as the utilization of physics-based cloth simulation losses in training.

In ReSynth dataset, we showcase two illustrative outcomes in Fig. 7. These results demonstrate our framework’s
proficiency in adapting to a wide range of outfits or clothes with minimal effort, focusing instead on refining a
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Real Point-clouds

(Ground-Truth) 

ClothDiffuse & ClothDiffuse-meshed

(Ours)

POP & POP-meshed 

(ICCV’ 21)

FITE 

(ECCV’ 22)

SCANimate 

(CVPR’ 21)

Real Point-clouds

(Ground-Truth) 

ClothDiffuse & ClothDiffuse-meshed

(Ours)

POP & POP-meshed 

(ICCV’ 21)

FITE 

(ECCV’ 22)

SCANimate 

(CVPR’ 21)

Fig. 5. Qualitative Comparison on CAPE Dataset.

garment feature uniquely associated with the presented outfit. Detailed results are included in the supplementary
video.

5.3 Ablation Study
We conduct an ablation study on the ReSynth dataset to assess the contributions of two core components of our
approach: dynamics feature encoding and diffusion-based iterative refinement. Quantitative results are presented
in Tab. 4, with additional qualitative results provided in Fig. 8. Our study includes five variations:
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Captured Real-world 

Point Clouds

After Optimizing 

Garment Feature for 

this Specific Outfit

Animated Clothed Human

Ours POP (ICCV’ 21) CloSET(CVPR’ 23)

After Optimizing 

Garment Feature for 

this Specific Outfit

Animated Clothed Human

Ours POP (ICCV’ 21) CloSET(CVPR’ 23)

Fig. 6. Unseen Real-World Outfits. Qualitative comparison among Ours, POP [27] and CloSET [49].

Unseen Outfit in 
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Animated Clothed 

Human

After Optimizing 

Garment Feature for 

this Specific Outfit

Unseen Outfit in 

Point Clouds

After Optimizing 

Garment Feature for 

this Specific Outfit

Animated Clothed 

Human

Fig. 7. Unseen Outfits in ReSynth Dataset.

• Ours ()=25): This variation utilizes fewer diffusion steps, specifically ) = 25, as opposed to 100 steps
typically used in our model. A noticeable increase in CD and decrease in STD are observed after reducing
the number of diffusion steps, especially in the case of loose outfits like “felice-004”, where CD rises from
5.58 to 6.33, and STD drops from 6.54 to 3.89. These outcomes emphasize the importance of diffusion
models for progressive and diversified modeling of clothed humans.

• w/o diffusion: This variation omits diffusion-based progressive refinement, resulting in single-step deter-
ministic predictions. Across the three outfits in Tab. 4, we observe a notable decrease in CD and also a lack
of diverse outcomes, further reinforcing the importance of diffusion models in clothed human modeling.

• w/o physics: This variation omits two physics-based losses defined in Eq. (16) and (17). The rapid increase
in CD and DE, compared with Ours ()=100), demonstrates the utility of physics-based constraints.

• w/o dynamics: This variation uses a single frame as input, where only pose-dependent features are
considered, without dynamic modeling and two physics-based losses mentioned above. In Tab. 4, we
observe larger errors in both CD and DE across three outfits where dynamic features are omitted, showing
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the effectiveness of explicit dynamics modeling in generating clothed humans with smooth and natural
clothing details.

• w/o all: This variation removes physics-based losses, dynamics modeling, and diffusion-based refinement
from our model, resulting in the poorest performance.

Furthermore, we showcase two examples in Fig. 8 where we compare our model with the scenerios Ours(w/o
dynamics) and Ours(w/o diffusion). It can be observed that w/o dynamics normally presents results lack of
correct and smooth clothing patterns due to the ignorance of explicit dynamic features and physics-inspired loss
functions. w/o diffusion typically gives results lack of clothing details especially for the loose skirt presented in
Fig. 8. This illustrate the importance of iterative refinement introduced in our proposed diffusion-based model for
the modeling of complicated clothing dynamics.

Methods

Outfits
christine-027 janett-025 felice-004 alexandra-006 eric-035 all
knee dress
short sleeve

short skirt
long sleeve

long dress
tank top

loose blouse
long pants

blazer jacket
long pants -

CD↓ DE↓ STD↑ CD↓ DE↓ STD↑ CD↓ DE↓ STD↑ CD↓ DE↓ STD↑ CD↓ DE↓ STD↑ CD↓ DE↓ STD↑
Ours ()=100) 1.35 3.20 6.31 1.03 2.79 6.20 5.58 3.08 6.54 1.50 3.10 7.80 1.30 3.71 6.92 1.14 3.12 6.63
Ours ()=25) 1.50 3.21 3.78 1.12 2.81 3.56 6.33 3.12 3.89 1.54 3.10 3.94 1.32 3.72 3.90 1.18 3.13 3.87
w/o diffusion 1.66 3.23 - 1.20 2.82 - 6.93 3.16 - 1.67 3.12 - 1.33 3.78 - 1.30 3.18 -
w/o physics 1.38 3.29 5.85 1.10 2.85 6.02 5.81 3.26 5.96 1.54 3.16 7.25 1.30 3.87 6.12 1.19 3.19 6.21
w/o dynamics 1.39 3.32 5.05 1.10 2.85 5.01 5.87 3.30 5.19 1.56 3.19 5.68 1.31 3.92 5.37 1.20 3.23 5.28

w/o all 1.72 3.36 - 1.23 2.88 - 7.30 3.37 - 1.70 3.25 - 1.35 3.99 - 1.36 3.27 -

Table 4. Ablation Study. Dynamic Error (DE) highlights the importance of dynamics modeling in our model, and the
standard deviation (STD) of generations presents the capability of diversified modeling. We underline key comparisons per
column for enhanced clarity of ablation results.

5.4 Discussions
Diverse Generation. Our diffusion-based approach can generate diverse patterns of clothes. In Fig. 9, we
showcase two examples of this capability, each presented in three variations. These variations illustrate how our
method produces distinct clothing details that vary from one another while maintaining a high level of naturalness
and smoothness. For a more thorough exploration of the range and quality of these generated patterns, we invite
you to view the supplementary video, which provides an in-depth depiction of the diverse garment generations.
Interpolate Different Garment Features. In Fig. 10, we present the qualitative results of applying linear

interpolation to combine two distinct garment features. By blending these features, we explore how intermediate
values transition between different styles, textures, and patterns, resulting in seamless transformations that
showcase diverse aesthetic attributes. Through gradual shifts of garment features, the results highlight the
flexibility of our model to synthesize realistic variations that retain elements from both original garment types.

Effect of Generation Time Duration. To examine the effect of varying temporal durations in the generated
sequences, we downsample the FPS of an 8-frame input motion sequence to different rates. The original FPS of
motions in the ReSynth dataset is 15. When downsampled to 15, 10, 5, 3, 1, 0.5 FPS, the output durations are 0.53,
0.8, 1.6, 2.7, 8, 16 seconds, respectively. Longer durations result in greater variation in the generated outputs.
We evaluate the CD and NML on the typical outfit “felice-004” in the ReSynth dataset. The results are reported
in Tab. 5. We observe a significant performance drop when the duration of the generated sequence exceeds 2.7
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Lack of Temporal

Consistency

Lack of 

Details

Real Point-clouds

(Ground-Truth) 

OursOurs

（w/o diffusion)

Ours

(w/o dynamics)

Lack of Temporal 

Consistency

Lack of 

Details

Fig. 8. Qualitative Results on Ablation Study. w/o dynamics presents results lack of temporally consistent clothing
patterns, while w/o diffusion gives results lack of clothing details.

Input Motion FPS 15 10 5 3 1 0.5
Generation Time Duration 0.53s 0.8s 1.6s 2.7s 8s 16s

CD↓ 5.58 5.61 6.52 7.63 11.25 12.3
NML↓ 1.14 1.14 1.20 1.28 1.37 1.42

Table 5. Evaluation of Generation Time Duration.We report the CD and NML on the typical outfit “felice-004” in the
ReSynth dataset.

seconds (3 FPS). This may be due to the greater variation in the input motion sequence over longer durations,
which disrupts the smoothness of the generated clothing dynamics.

ACM Trans. Multimedia Comput. Commun. Appl.

 



Generating High-Fidelity Clothed Human Dynamics with Temporal Diffusion • 17

Variation 1 Variation 2 Variation 3 Variation 1 Variation 2 Variation 3

Fig. 9. Diversified Generation of Clothes Pattern.

DPF [35] POP [27] Ours ()=100) Ours ()=25) w/o diffusion
Time 30† 0.020 0.514 0.141 0.022

Table 6. Inference Time Per Frame in Seconds. Results are obtained on a single A100 GPU, while †DPF [35] uses a more
powerful RTX6000 GPU.

Limitations. Our method utilizes a diffusion-based iterative refinement process, which requires 0.514 seconds
per frame for inference, as detailed in Tab. 6. While this is significantly more efficient compared to the most recent
method, DPF (over 30 seconds), it remains slower than single-step inference approaches, such as our ablation case
w/o diffusion (0.022 seconds) or POP (0.020 seconds). To address this, we could explore learning-based efficient
sampling strategies, as utilized in some diffusion models [46]. Additionally, replacing linear blend skinning
weights with learnable skinning methods [35] could further enhance performance.

Failure Cases. In Fig. 11, we present two failure cases from the CAPE dataset, highlighting specific challenges
our method faces. It can be observed that our approach struggles with accurately modeling tight garments in the
scenarios where certain parts of the clothing are significantly distant from the body during specific reference
motions. This issue may stem from the regularization of clothing displacement lengths during model training,
which might overly constrain the model, limiting its ability to capture large deformations. To address these
challenges, introducing adaptive regularization techniques that account for varying garment types and their
interaction with the body could improve the model’s robustness. Additionally, expanding the dataset to include
more diverse examples, particularly with tight garments in complex poses, could provide the model with a
richer set of observations to learn from. Enhancing data augmentation techniques to simulate these challenging
conditions could also help in overcoming the limitations.
In Fig. 7 of unseen outfit animation, some minor artifacts are observed around the neck area, specifically at

the boundary between the clothes and neck. These artifacts likely result from the model encountering limited
instances of loose clothing around the neck in the provided unseen point cloud frames. Despite this, our method
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Fig. 10. Interpolation Through Different Garment Features.

remains effective overall, with these artifacts being exceptions rather than the norm. To mitigate these issues,
future work could focus on enhancing the dataset with more diverse examples of loose clothing and refining the
model’s handling of complex boundaries through targeted training and post-processing techniques.

6 CONCLUSION
In this work, we introduced ClothDiffuse, a diffusion-based method for learning clothed human dynamics,
enabling animations with natural clothing details from a reference body motion. ClothDiffuse is the first data-
driven approach to integrate three significant elements into this task: dynamics modeling, iterative refinement,
and diversified generation. Our method not only advances the generation of high-fidelity clothed humans but
also addresses persistent challenges in the field, such as presenting convincing visual effects for cloth dynamics,
maintaining temporal smoothness, and generating diverse clothing patterns. Empirical results demonstrate that
incorporating these elements significantly enhances the generation of clothed humans with smooth and natural
clothing details over time, especially for loose clothes, reducing chamfer distance and effectively adapting to
out-of-domain clothing types.

ACM Trans. Multimedia Comput. Commun. Appl.

 



Generating High-Fidelity Clothed Human Dynamics with Temporal Diffusion • 19

Ground-Truth OursGround-Truth Ours

Fig. 11. Failure Cases.

Future work could focus on adaptive regularization techniques to better accommodate varying garment types
and their interaction with the body, expanding the dataset to include more diverse examples, particularly with
tight garments in complex poses, and refining data augmentation and post-processing methods to address the
discussed limitations and further improve the robustness of ClothDiffuse.
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