

Show me your Body: Gender Classification from Still Images

Ioannis A. Kakadiaris¹, Nikolaos Sarafianos¹ and Christophoros Nikou^{1,2}

¹Computational Biomedicine Lab, Dept. of Computer Science, University of Houston, Houston, TX ²Department of Computer Science and Engineering, University of Ioannina, Ioannina, Greece

Overview

Training & Testing

Observable information:

- Arm length
- Knee height
- Waist height
- Hip breadth

Training Only

Privileged information:

- Hip circumference
- Chest circumference
- Ankle circumference

3D Pose Estimation Observable Measurements

Introduction

Problem Statement

Predict the gender using human metrology

Motivation

- Explore the use of ratios of anthropometric measurements for gender estimation
- Exploit privileged information available during training

Background

- Observable features: Information available at both training and testing
- Privileged features: Information available only at training time

Method

Ratios of Anthropometric Measurements

- Original features: $X = NxM_1$, $M_1 = \frac{F_1x(F_1-1)}{2}$, F_1 the number of original measurements
- Privileged features $X^* = NxM_2$, $M_2 = \frac{F_2x(F_2-1)}{2}$, F_2 the number of privileged measurements
- Features are split to upper body (X_U) and lower body (X_L) sets

Classification

SVM:
$$\min_{\xi_1,...,\xi_N,w,b} \left\{ \frac{1}{2} ||w||^2 + C \sum_{i=1}^N \xi_i \right\}$$

s. t.
$$y_i(\langle w_i, x_i \rangle + b) \ge 1 - \xi_i, \xi_i \ge 0, i = 1, ..., N$$

SVM+:
$$\min_{\xi_1,...,\xi_N,w,b} \left\{ \frac{1}{2} (||w||^2 + \gamma ||w^*||^2) + C \sum_{i=1}^N \xi_i(w^*,b^*) \right\}$$

s.t.
$$y_i(\langle w_i, x_i \rangle + b) \ge 1 - \xi_i(w^*, b^*) \xi_i(w^*, b^*) \ge 0,$$

 $i = 1, ..., N$

Margin Transfer:
$$\min_{\xi_1,\dots,\xi_N,w,b} \left\{ \frac{1}{2} ||w||^2 + C \sum_{i=1}^N \xi_i \right\}$$

s.t.
$$y_i(\langle w_i, x_i \rangle + b) \ge \rho_i - \xi_i, \xi_i \ge 0, i = 1, ..., N$$

w the weight vector, b the bias parameter, ξ_i is the slack, and C denotes the penalty parameter

Results SVM+ CAESAR dataset -SVM **Testing Features** Only observable (X) 97.61 ± 0.44 98.18 ± 0.56 Lower body observable (X₁) 95.82 ± 0.81 95.34 ± 0.74 Upper body observable (X_{II}) 76.69 ± 2.98 76.54 ± 2.95 Observable & Privileged (X+X*) 99.10 ± 0.23 99.37 Cao *et al.* [1]

Set of features

Image Dataset	X	X_L	X _U
PaSC	71.37 ± 1.64	57.65 ± 2.82	58.06 ± 2.73
SARC3D	86.00 ± 2.00	78.00 ± 4.00	72.00 ± 4.00

Contributions

- Using privileged information improves the classification accuracy
- Ratios of measurements are as discriminative as the actual values
- Predicting the gender from images using anthropometry is feasible

References

[1] D. Cao, C. Chen, D. Adjeroh and A. Ross, "Predicting gender and weight from human metrology using a copula model," in Proc. 5th IEEE International Conference on Biometrics Theory, Applications and Systems, Washington, DC, USA, Sep. 23-26 2012, pp. 162-169.

Acknowledgements

This research was funded in part by the UH Hugh Roy and Lillie Cranz Cullen Endowment Fund and the European Commission (H2020-MSCA-IF-2014), under grant agreement No 656094.

