Show me your Body: Gender Classification from Still Images Ioannis A. Kakadiaris¹, Nikolaos Sarafianos¹ and Christophoros Nikou^{1,2} ¹Computational Biomedicine Lab, Dept. of Computer Science, University of Houston, Houston, TX ²Department of Computer Science and Engineering, University of Ioannina, Ioannina, Greece **Overview** **Training** & Testing #### Observable information: - Arm length - Knee height - Waist height - Hip breadth **Training** Only #### Privileged information: - Hip circumference - Chest circumference - Ankle circumference # 3D Pose Estimation Observable Measurements ## Introduction #### **Problem Statement** Predict the gender using human metrology #### **Motivation** - Explore the use of ratios of anthropometric measurements for gender estimation - Exploit privileged information available during training ## Background - Observable features: Information available at both training and testing - Privileged features: Information available only at training time ## Method ## Ratios of Anthropometric Measurements - Original features: $X = NxM_1$, $M_1 = \frac{F_1x(F_1-1)}{2}$, F_1 the number of original measurements - Privileged features $X^* = NxM_2$, $M_2 = \frac{F_2x(F_2-1)}{2}$, F_2 the number of privileged measurements - Features are split to upper body (X_U) and lower body (X_L) sets #### Classification SVM: $$\min_{\xi_1,...,\xi_N,w,b} \left\{ \frac{1}{2} ||w||^2 + C \sum_{i=1}^N \xi_i \right\}$$ s. t. $$y_i(\langle w_i, x_i \rangle + b) \ge 1 - \xi_i, \xi_i \ge 0, i = 1, ..., N$$ SVM+: $$\min_{\xi_1,...,\xi_N,w,b} \left\{ \frac{1}{2} (||w||^2 + \gamma ||w^*||^2) + C \sum_{i=1}^N \xi_i(w^*,b^*) \right\}$$ s.t. $$y_i(\langle w_i, x_i \rangle + b) \ge 1 - \xi_i(w^*, b^*) \xi_i(w^*, b^*) \ge 0,$$ $i = 1, ..., N$ Margin Transfer: $$\min_{\xi_1,\dots,\xi_N,w,b} \left\{ \frac{1}{2} ||w||^2 + C \sum_{i=1}^N \xi_i \right\}$$ s.t. $$y_i(\langle w_i, x_i \rangle + b) \ge \rho_i - \xi_i, \xi_i \ge 0, i = 1, ..., N$$ w the weight vector, b the bias parameter, ξ_i is the slack, and C denotes the penalty parameter #### Results SVM+ CAESAR dataset -SVM **Testing Features** Only observable (X) 97.61 ± 0.44 98.18 ± 0.56 Lower body observable (X₁) 95.82 ± 0.81 95.34 ± 0.74 Upper body observable (X_{II}) 76.69 ± 2.98 76.54 ± 2.95 Observable & Privileged (X+X*) 99.10 ± 0.23 99.37 Cao *et al.* [1] ## Set of features | Image Dataset | X | X_L | X _U | |---------------|--------------|--------------|----------------| | PaSC | 71.37 ± 1.64 | 57.65 ± 2.82 | 58.06 ± 2.73 | | SARC3D | 86.00 ± 2.00 | 78.00 ± 4.00 | 72.00 ± 4.00 | ## Contributions - Using privileged information improves the classification accuracy - Ratios of measurements are as discriminative as the actual values - Predicting the gender from images using anthropometry is feasible ## References [1] D. Cao, C. Chen, D. Adjeroh and A. Ross, "Predicting gender and weight from human metrology using a copula model," in Proc. 5th IEEE International Conference on Biometrics Theory, Applications and Systems, Washington, DC, USA, Sep. 23-26 2012, pp. 162-169. #### Acknowledgements This research was funded in part by the UH Hugh Roy and Lillie Cranz Cullen Endowment Fund and the European Commission (H2020-MSCA-IF-2014), under grant agreement No 656094.