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Quantitative Results

Key Takeaways

Problem Statement: Given a textual description retrieve the most relevant images

Objectives: 

• Match  the  distributions of the features that belong to the same identity

• Learn modality invariant representations

Motivation

Method
Image-to-Text Text-to-Image

Rank-1 Rank-10 Rank-1 Rank-10

DAN 55.0 89.0 39.4 79.1

NAR 55.1 89.6 39.4 79.9

VSE++ 52.9 87.2 39.6 79.5

SCO 55.5 89.3 41.1 80.1

GXN 56.8 89.6 41.5 80.1

TIMAM 53.1 87.6 42.6 81.9

Cross-Modal Retrieval results on the Flickr-30K dataset

Qualitative Results
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Text-to-Image Retrieval Ablation Study on the CUHK-PEDES dataset

The man is wearing a black 
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From which Modality?

Adversarial Feature Learning

Same Person?

Cross-Modal Matching

• Adversarial  learning  is  well-suited  for  cross-modal matching: Observed 2% to 5% improvements in terms of rank-1 

accuracy over the previous best-performing techniques

• Pre-trained  language  models  can  successfully  be  applied to cross-modal matching: Observed 3% to 5% improvements 

when features are learned in this manner
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Contributions:

1. Introduce an adversarial representation learning framework that brings the features from both modalities “close-to-

each-other”

2. Demonstrate that BERT can result in more discriminative word representations suitable for cross-modal matching

LI LM BERT Adv. Learning Rank-1

✔ 40.1

✔ 44.9

✔ ✔ 49.8

✔ ✔ ✔ 51.3

✔ ✔ ✔ 52.9

✔ ✔ ✔ ✔ 54.5


