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Abstract Speaker diarization aims to automatically answer the question “who spoke when”
given a speech signal. In this work, we have focused on applying the FLSD approach, a
semi-supervised version of Fisher Linear Discriminant analysis, both in the audio and the
video signals to form a complete multimodal speaker diarization system. Extensive exper-
iments have proven that the FLSD method boosts the performance of the face diarization
task (i.e. the task of discovering faces over time given only the visual signal). In addition,
we have proven through experimentation that applying the FLSD method for discriminating
between faces is also independent of the initial feature space and remains relatively unaffec-
ted as thenumber of faces increases. Finally, a fusion method is proposed that leads to perfor-
mance improvement in comparison to the best individualmodality, which is the audio signal.

Keywords Speaker diarization · FLsD · FLD · Audio-visual fusion

1 Introduction

Speaker diarization is the task that utilizes signal analysis techniques, in order to automat-
ically answer the question “who spoke when” given an audio or a video recording that
contains an unknown amount of speech and speakers [4, 30]. This is an important task in
multimedia analysis, being used in several applications such as multimedia summarization,
speaker recognition and speaker-based retrieval of multimedia. Apart from using only audio
information, speaker diarization can also be based on visual features, if such information is
available [24, 33] and [18].
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A very important factor of speaker diarization in any modality (video or audio) is the
choice of the feature space: it should contain information that only allow differentiating
between speakers, and ideally, no other kind of information. The reason is that speaker
diarization methods using some type of clustering based on the Euclidean distance, can
be misled by the non-speaker discriminative dimensions. A solution to this problem is to
apply dimensionality reduction methods to project the initial features to a speaker-relevant
subspace, either by using the PCA method [6] or by adopting a supervised rationale [7].
In [20] the Fisher Linear Semi-Discriminant analysis (FLSD) method has been proposed,
according to which information from the sequential structure of the audio signal is used as
a substitute for unknown speaker labels required by the FLD method.

In [20], FLSD method was applied on audio features. The focus of this work is to extend
and test the methodology in the video and the fused audio-visual domains. In particular, the
overall goal of the current work is twofold:

– To extend the FLSD approach in the context of visual-based speaker diarization and
evaluate its performance.

– To propose a method that fuses the visual and audio-based speaker diarization modules
to further boost performance.

2 Fisher linear semi-discriminant analysis for temporal data

In this section, we will briefly describe the Fisher Linear Semi-Discriminant Analysis
(FLSD) approach for any type of temporal features. This method was first proposed in [20]
in the context of audio-based speaker diarization. FLSD is based on extending the Fisher
linear discriminant analysis (FLD) method, which is in general applied in the context of
a general classification setting where feature vectors are mapped to particular classes. The
following subsection provides a description of the FLD background, while Section 2.2
describes the FLSD approach in general.

2.1 Fisher linear discriminant analysis

The basic rationale behind the FLD approach is to extract linear combinations of features,
where the classes’ means are far from each other and the variance within each class is small.
If x is a Nx dimensional feature vector, C = {ck} is the set of class labels, and {xi �→ ci} is
a set of mappings between feature vector samples to classes, the FLD method defines the
following matrices:

– the between class scatter matrix

Sb = E
c∈C[(mc − m)(mc − m)�], (1)

– the average within-class scatter matrix: in an audio or video recording that contains an
unknown amount of speech and also an unknown number of speakers

Sw = E
c∈C

[
E

xi �→c
[(xi − mc)(xi − mc)

�]
]

, and (2)

– the total scatter matrix of samples

Sm = E
all xi

[(xi − m)(xi − m)�].
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where

m = E
all xi

[xi],
mc = E

xi �→c
[xi], ∀c ∈ C

and E[·] denotes the sample mean. Note that Sm does not depend on the class mappings,
while one can easily verify that Sm = Sb + Sw .

Given a positive integer Ny < Nx , the aim of FLD is to find, among all possible Nx ×Ny

full rank matrices A, the matrix that optimizes a criterion which, in most of the cases is the
following:

r = tr

(
A�S1
A�S2

)
(3)

where (S1,S2) can be any of {(Sb,Sw), (Sm,Sw), (Sb,Sm)} and tr(·) denotes the trace of a
square matrix. Other similar criteria have been proposed in the literature [15, 17] but maxi-
mizing the trace of the ratio criterion r is probably the most widely used. It actually amounts
to find the eigenvectors with largest eigenvalues of the linear matrix pencil (S1, S2). The
optimal solution resulting from the previously described maximization is unique up to any
invertible transform, respectively rotation and/or scaling, of matrix Â. Then this matrix can
project the initial (high dimensional) feature vectors to their Ny-dimensional FLD-optimal
subspace:

y = Â�x (4)

2.2 FLSD

The FLD method is supervised, i.e. it requires to know, for a set of samples their mappings
to class labels. However, in many cases (such as speaker diarization) such information is not
available. FLSD considers a less demanding setting, according to which the requirement
of knowing the samples mapped to each class is reduced to knowing, for each sample, a
set of samples that are mapped to the same class. In applications that are associated with
temporal data, the samples (feature vectors) are temporally ordered and it may be the case
that for each sample, all neighbouring samples, in a relatively small time window, most
likely belong to the same class. For example, in the speaker clustering context, we do not
know all the samples spoken by a speaker beforehand, but one can guess that, for each
sample, all neighbouring samples most likely belong to the same speaker.

In [20] the concept of class threads was introduced to define the functionality of the
FLSD approach. Each (unknown) class is composed out of one or more class threads, there-
fore all samples of the same class thread are also mapped to the same class. In the context of
an unsupervised task, the mapping of class threads to class is not known, while the mapping
of samples to class threads can be known. Therefore, we can estimate the average within-
class thread Shw and between-class thread Shb scatter matrices and then apply the FLD
criterion using these matrices. It has been proven in [20] that, under certain conditions, the
subspace found using Shw and Shb can well approximate the one that would had been found
if the mapping with original classes was known.

In the context of audio-based speaker diarization, the class threads are defined as fixed-
size speech segments (e.g. 1 second long), as described in Section 3. On the other hand,
for the case of visual-based speaker diarization, the class threads will be defined based on
video-shots (see Section 4). In the first case, we refer to the respective threads as “speaker
threads” while in the case of visual information as “face threads”.
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3 Audio-based speaker diarization

Audio-based speaker diarization is achieved through FLsD. As a first step, the initial Nx-
dimensional feature vectors are generated in a two step methodology, similar to the one
in [31]. In particular, the short-term features are first extracted, resulting in Nx/2 Mel-
frequency Cepstrum Coefficients (MFCCs) for every short-term frame. Selected short-term
step and size are 20 ms. Speech Energy has not been included, as it is known to vary impor-
tantly between vectors that correspond to the same speaker. It is important to emphasize that
the nature of the FLsD method does not require any particular type of initial feature space
and therefore any features that convey speaker discriminative information might have been
used (e.g. LPC). After the short-term feature sequences are extracted, the means and vari-
ances are computed over L subsequent MFCC vectors. In particular, means constitute the
first half dimensions of the new vectors and variances the second half. Each of these new
vectors describes a texture window the duration of which is equal to 1 sec.

Our next step is to obtain the near-optimal speaker discriminative projections of these
texture window feature vectors. Since finding the exact FLD optimal subspace would
require knowing the speakers of the analysed signal beforehand, we have adopted the FLSD
approach, according to which each fixed-size texture segment is assigned a new speaker
thread. The feature vectors sampled within this segment are used to obtain the speaker-
thread mean feature vector and scatter matrix and also to update the overall within-class
thread and mixed-class scatter matrices used in the FLD method. Once all the audio sig-
nal has been analysed, the scatter matrices are given as arguments to the Fisher criterion to
obtain the optimal speaker-discriminative subspace.

Once the audio segments have been represented in the (reduced) speaker-discriminative
subspace, the conditional probabilities of speakers given the provided vectors are estimated.
Towards this end, a non-parametric discriminative classifier is employed, namely the K-
Nearest Neighbour classifier (K-NN). The labels used by K-NN to estimate the speaker
probabilities are obtained by applying the Fuzzy C-Mean algorithm [2] on the projected
feature vectors, followed by a HMM - based smoothing. Smoothing using HMM allows
to improve over the initial clustering speaker labels, by also taking into account the prece-
dent and successive segments. As a final step, successive segments of the same speaker
are merged, forming longer speaker-homogeneous segments. The above process is repeated
for a range of number of speakers and the Silhouette width criterion [34] is used to decide
about the quality of the clustering result in each case and therefore the optimal number of
speakers.

4 Visual-based speaker diarization

4.1 Overview

Visual-based speaker diarization tries to determine the identity of each speaker using exclu-
sively visual information. Figure 1 presents the flowchart of our visual-based speaker
diarization procedure, further detailed in this section. In summary, our approach first
extracts video shots and then faces are detected per frame and grouped per shot. For each
face, a set of features is extracted and a semi-supervised dimensionality reduction approach,
similar to the one described in Section 3, is used to define face-discriminant feature sub-
spaces. A clustering algorithm is then applied on the reduced space and a metric that char-
acterizes the quality of the estimated results is obtained. Finally, a lip movement detection
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Fig. 1 Flowchart of the visual-based speaker diarization process

technique is used along with a nearest neighbor classifier to extract the final speaker iden-
tities. It has to be noted that, since extracting information from multiple faces is not only a
difficult task to accomplish but can also lead to misleading results, we chose to deal with
frames that contain only one dominant face.

4.2 Shot boundary detection

Video shots can be defined as a sequence of frames that appear to have been continuously
captured with the same camera [19]. Here, it will be further assumed that throughout a single
video shot, the detected face will belong to the same person. As as result, a video shot meets
the requirements of class thread definition for the FLSD approach.

Following that, the first step to find face threads, is to perform video-shot-change detec-
tion. We extract the histograms of two successive grayscale frames, in order to exploit the
advantages of this representation [29]. We then extract the normalized absolute difference
and locate the local maxima of this sequence as proposed by Zhang et al. [38]. The locations
of the detected maxima indicate the existence of a shot boundary.

4.3 Face feature extraction

As a next step, we apply the face detection algorithm of Viola and Jones [37] in order to
detect faces in each frame. This algorithm is combined with a skin detector which eliminates
all bounding boxes that do not correspond to a face. Forysth and Fleck [13] pointed out that
the color of human skin has a restricted range of hues and is not deeply saturated. As a result,
human’s skin has a specific range of values in a color space, but not the same for every color
space. The adopted skin detection process takes advantage of the face’s hue channel of the
HSV color space, by counting the pixels, the hue of which, is either close to zero or close
to one. If the number of these (skin-related) pixels is dominant in the respective bounding
box (i.e. if it is the majority in the candidate face image) then we proceed to the next step in
the processing workflow. If this condition is not satisfied, then the respective bounding box
is discarded.

In order to proceed with the feature extraction process we first resize the face image to
a fixed size of 100 × 100 pixels. We then apply a Gabor wavelet face feature extraction
technique. We concluded to the use of Gabor wavelets due to their resemblance with the
receptive fields of the visual cortex [10] and for the reason that they remain unaffected to
changes in illumination and to local distortions caused by the position and the expression of
the face [22, 26]. By using two different scales and three different orientations, we balanced
the extraction of descriptive features against computational complexity.
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4.4 Semi-supervised dimensionality reduction and clustering

Having defined a feature vector, we aim to reduce its dimensions so that the new feature
representation is discriminant in terms of faces. First we apply random projection to a lower
dimension (e.g. 500 dimensions) as a pre-processing step [14], in order to reduce the com-
putational complexity of the problem. Following that, we perform dimensionality reduction
through the FLsD method. For each face-containing shot, FLsD creates a new face thread,
and the feature vectors that belong in this shot are used to obtain the face-thread mean fea-
ture vector and scatter matrix, also updating the overall within-class thread and mixed-class
scatter matrices. Once the process is completed, the scatter matrices are given as arguments
to the Fisher criterion to obtain the optimal face-discriminative subspace. The assumption
used for this purpose was the existence of one face in each shot. Note that the equivalent
assumption made in the audio analysis task was that each 1-second segment contains a
single speaker.

The Fuzzy C-Means algorithm for clustering speech segments [2], used in this work,
requires beforehand the number of faces. Towards that direction, we experimented with
a variety of possible number of clusters, computing each time the Silhouette width crite-
rion [34]. The best solution is obtained by maximizing this criterion. After this clustering
procedure, we extract, for each shot, the most dominant face label and we assign it to the
entire shot. Therefore, each shot is now represented by a unique face label, along with a
corresponding probability which is described in the next paragraph (Fig. 2).

Apart from obtaining the cluster (face) labels, we compute the metrics which will be uti-
lized in the fusion process. The first metric, which represents the video probabilities (Pv),
is equal to the number of labels in each shot that belong to each cluster divided by the total
number of cluster labels within that shot. For example, if face A has been found in 45 out
of 60 labels in shot t , the probability Pv(t, face = A) of the specific cluster will be equal to

Fig. 2 Dimensionality reduction requires as an input feature vectors (Fi ) and their relative labels (Li ) both
of which are per frame. The GK fuzzy clustering technique in the reduced feature space along with the
obtainment of the most dominant face labels in a shot lead us to the final face labels with a time resolution
of one second
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Fig. 3 Representative example of the aforementioned lip detection method

0.75. Moreover, we performed simple linear regression using the ratio of the average inter-
cluster distance divided by the average outer-cluster distance as an explanatory variable. The
coefficients of the estimated regression line were determined by conducting experiments
on a subset of the data and varied depending on the estimated number of clusters. The out-
come of this procedure is a cluster-based weight Clw , which along with the estimated video
probabilities are used in the fusion process, as described in Section 5.3. Clw is therefore
estimated for each separate input video sequence as described above.

4.5 Visual-based speaker extraction

Until this point, the algorithm provides an answer to the question “which face is shown and
when”. In order to move from the extracted face labels to the respective speaker labels, we
further use moving lip information, obtained using the following lip movement detection
algorithm (Fig. 3).

1. The lower part of the detected face is isolated by cropping the mouth region from the
initial face image.

2. We apply the lip detection technique proposed by Soetedjo et al. [28] in order to trans-
form the mouth region, from the RGB color space to a grayscale image. Its pixel
values correspond to a confidence level that the respective pixels belong to the lips
region. A simple heuristic post-processing technique is applied to remove the pixels
that correspond to the internal region of an open mouth.

3. We transform the mouth image into binary, by thresholding the 10 % of its highest
values, to obtain the brightest regions, i.e. the regions where the confidence of lips is
high.

4. A 3 × 3 median filter is applied to remove noise.
5. Aiming to model the shape of the lips during speech, we use the extracted lip pixels

of the previous step to construct an ellipse which is commonly used for that purpose
[3, 9].
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6. We compute a distance-based metric to measure abrupt changes in two successive
detected ellipses (i.e., two successive estimated lip regions). In particular, this metric is
defined as follows:

M = mean

( |αt+1 − αt |
αt+1

,
|βt+1 − βt |

βt+1

)

where αt , βt are the two semi-axes of symmetry of the ellipse at time t . Finally, to
transform this metric from frame to time resolution we obtain its average every one
second.

As a next step, we threshold the lip movement metric described above, in order to keep
the face labels (which now correspond to speaker labels) for which we can grant a confident
answer that there is a lip movement. For the remaining segments, which (a) do not contain
a face or (b) contain a face which does not correspond to moving-lips, we assign to each
one of them, the label of the most neighboring speaker. In this way we obtain a complete
sequence of speaker labels.

5 Fusion

5.1 Overview

Expecting fusion of audio and video information to improve overall performance is justi-
fied with information theoretic arguments as follows. Let the audio and video observation
random variables be denoted as Xa and Xv respectively, while the (ground truth) reference
person be denoted as Y and let these random variables take independently values at each
considered time step t . Then, for the mutual information I between these variables, it holds
that

I (Xa,Xb;Y ) ≥ I (Xa; Y )

and
I (Xa,Xb;Y ) ≥ I (Xb; Y )

i.e. the mutual information with the target variable can only increase if we take into consid-
eration both audio and video observations together. This is direct consequence of the data
processing inequality principle, stating that, for any deterministic function f , I (X; Y ) ≥
I (f (x);Y ) [8], i.e. the mutual information can only be decreased when applying a function
to the variable. Considering that the audio variable is obtained by applying a (determinis-
tic) projection function on the joined audio-video space, the two inequalities above follow
directly. Moreover, these inequalities are expected to hold in the strong case, since Xa and
Xv are expected to be independent to a great extent: the sound of one’s voice is not a-priori
correlated with one’s look. In other words, two persons with similar voice may differ in
how the look and vice-versa. This raises the upper bound of performance of an approach
taking both modalities into consideration. Note, however, that this is a theoretical bound: a
fusion method may show decreased performance if it fails to cope with the increased join
dimension space created by the two modalities, with the finite sample space and/or with
time alignment of modalities. Engineering a method that manages to boost the performance
may be proven to be challenging task.

Fusing the audio and visual modalities in the speaker diarization task can be achieved
either in an early stage, where the audio and visual features are combined to form a large
feature dimensionality, or in a late manner. A related class of works [16, 18, 32] investigates
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the problem of audio-visual fusion in the feature space for the speaker diarization problem.
Garau & Bourlard [18] refer to a number of multimodal features in order to investigate
an initialization approach whereas Friedland et al. [16] produce a combined log-likelihood
of the features of the two individual modalities. Another related class of works [24, 33]
is that of late audio-visual fusion (i.e. mapping of the corresponding labels). Noulas et al.
[24] create a joint audio-visual space that results in the composition of two generative sets
(whether or not the visible person corresponds to a speaker) for each person model.

In this work, we have opted not to apply fusion in the feature vector formation stage, since
combining the audio and visual features would result in very high dimensional spaces. In
addition, the FLsD approach is not applied exactly in the same way for the two modalities.
This is due to the fact that different time resolutions are used for generating the samples
used by the FLsD dimensionality reduction step.

On the other hand, fusion of audio-visual information has been done in two distinct
steps, summarized as video-guides-audio, audio and video together. In particular, at a “pre-
fusion” step (see Section 5.2), the video shot limits extracted from the visual module are
used to exclude respective audio signal areas from the audio-based process. Then, the core
fusion process is executed by combining the audio and video labels to extract the final fused
speaker labels, as described in Section 5.3.

5.2 Using video shot information to improve audio-based diarization

As a pre-processing fusion step we exploit the accuracy of the shot boundary detection
method by using the extracted shot limits (extracted based on the visual information), in
order to improve the FLsD results applied on the audio module. Firstly, we isolate and
exclude from the dimensonality reduction process of the audio problem, the time indices
that correspond to a shot boundary in the video module. This is done due to the fact that
the probability of multiple speakers is high near a shot boundary. Therefore, the probability
that the FLsD method is fed with non-homogeneous data (which may lead to instability) is
also high near the shot boundaries.

At a second step, we use the shots’ ID in the FLsD process of the audio segments. In
particular, the “ speaker threads” described in Section 3 are defined based on the video shots,
instead of the fixed-size one-second texture audio segments. So, information taken from
visual analysis, the video shot, is used to improve on the one-second assumption somehow
arbitrarily chosen for audio. Since video shots last more than one second, (audio based)
speaker thread statistics defined on video shots will be closer to the speaker class ones, and
therefore allow the FLSD approach to derive an improved feature subspace.

5.3 Core fusion

This subsection describes the core fusion process, i.e., how to obtain the fusion labels from
the respective audio and video individual decisions. In other words, our purpose in this
submodule is to estimate a mapping between the labels of audio and video and then to
combine the (mapped) labels in order to extract the final decisions.

Given the number of estimated speakers in the video (Nv) and in the audio (Na), we
construct a table (T ) of size equal to Nv ×Na , the contents of which are filled in as follows:

T (m, n) =
∑

i:vi=m

j :aj =n

Pv(i, vi) + Pa(j, aj )

2
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Where m = 1, . . . , Nv , n = 1, . . . , Na and vi , ai are the video and audio labels respec-
tively. Once we have completed this procedure, we apply the Hungarian method [21] to
the resulting matrix T in order to derive a confusion matrix (CM) which maps the labels
extracted from the video module with those extracted from the audio. In other words, apart
from the confusion matrix, each video label is mapped to a unique audio label using the
mapping functionL(i). For example,L(2) = 1 means that the second visual label is mapped
to the first audio label.

Having taken into consideration that the audio module demonstrates better performance
measures, we chose to attribute less significance to the Clw of the video module. Thus,
fusion probabilities are obtained for the t th second from the following formula:

Pf (t, c) = Pa(t, c) ·
(
1 − Clw

3

)
+ Pv(t, L(c)) · Clw

3

where c refers to the respective cluster. Then, we derive the labels which display higher
fusion probability and by applying the Viterbi algorithm, the most probable speaker path is
obtained.

6 Experimental results

6.1 Dataset and performance measures

For the evaluation of the proposed algorithm, we used the publicly available Canal9 cor-
pus [36]. The corpus consists of 70 debate recordings where participants do not act, but
are actually engaged in unprompted, and often vivid, conversations. There are 190 unique
participants in total, 165 of which are men and 25 are women, where each one participates
in a maximum of three different debates. The number of participants in each debate varies
from 3 to 5 (including the moderator) and as a result we experimented with numerous dif-
ferent face poses and orientations of each participant. Manual speaker segmentation is also
provided and has been used as ground truth for the evaluation of all experiments.

In addition, for the evaluation of our “Face Diarization” approach described in the fol-
lowing subsection, we used a subset of the Canal9 corpus consisting of 25 videos which
were manually annotated according to which face was shown and when. The duration of the
videos varied from 20 to 90 seconds, whereas the number of faces was equally distributed
between 2 and 5. Thus, our subset ended up with 40 different faces which were sufficient
for the execution of our experiments.

The evaluation for our diarization technique was performed using the diarization accu-
racy rate (DAR), the average cluster purity (ACP) and the average speaker purity (ASP)
measures, all of which are defined in [20].

6.2 Evaluation of the face diarization approach

In order to measure the ability of the video module to discriminate between different faces,
we conducted a variety of experiments regarding the initial feature space, the dimensionality
reduction method and the final dimensions of the FLsD. In order to evaluate the whole algo-
rithm regardless of the adopted feature methodology, we have also computed performance
measures when the pixel values of the detected faces were directly used as features, instead
of the adopted Gabor features described in Section 4.3. Our interest here is to measure the
influence of the initial feature space to the overall method.
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Indeed, results indicate that there is negligible difference in the face diarization accuracy
rate of the proposed method between the two initial feature spaces (raw pixel values and
Gabor features). In particular, Fig. 4 confirms that (a) if FLsD is not adopted, the face
diarization process experiences better results when Gabor features are used instead of simple
pixel values, (b) the FLsD approach is independent of the initial feature space (similar DAR
for pixel values and Gabor features) and (c) the DAR of the proposed method (including
FLsD) remains unaffected as the number of faces increases. This is not the case when the
Diarization process is applied without the FLsD dimensionality reduction method regardless
of the type of features. In other words, in the later case, both pixel values and Gabor features,
lead to performance that declines as the number of faces increases. This is another proof
of robustness of the FLsD approach. Regarding the optimal number of FLsD dimensions,
the projection of the feature space to four dimensions demonstrated the best performance,
although three dimensions were usually sufficient enough to solve a simple Face Diarization
problem.

Furthermore, Fig. 5 demonstrates a comparison between the Diarization Accuracy Rates
of each method for the Face Diarization problem. Note that PCA refers to the standard
statistical procedure [6] without any use of thin classes as in FLsD. Additionally, the dif-
ference between the optimal FLsD and the non-optimal described in Section 2.2 is that the
first obtains the class threads from the ground truth in order to provide us with an upper
boundary for the evaluation of our approach.

6.3 Evaluation of the FLsD approach for speaker diarization

Tables 1 and 2 show the performance indices of the diarization system for the CANAL9 cor-
pus in the FLsD subspace. The last rows refer to the combination of the pre-fusion method
with the core fusion technique.

In both cases, the final system that contains both fusion steps leads to almost 2 % DAR
increase respective to the performance of the best individual modality (i.e. the audio-based

Fig. 4 Comparison of the feature extraction techniques for both the initial space and the projection of our
feature space to 3 dimensions through the FLsD method. Significance of the FLsD subspace in function of
the number of faces and evidence that our approach is independent of the initial feature space
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Fig. 5 Comparison of the proposed approach with other methods for subspace extraction

method). Both the ACP and the ASP measures demonstrate far better results when compar-
ison is made between the audio and the video modalities and also exhibit a considerable
increase when we proceed to the fusion step.

Providing a detailed comparison in terms of performance measures for the multimodal
speaker diarization task is not trivial, since it involves a wide variety of data acquisition
setups, scenarios and context. In this work, we have focused on political debates since they
are at the same time simple and realistic. The approach described in [27] also adopted the
Canal9 political debate benchmark to evaluate their methods, leading to an overall accuracy
of 78.6 % for the audio domain, while the fused output was 83.2 % accurate. In [11] the
audiovisual clustering process led to a performance rate of around 80 %, evaluated on the
Canal9 dataset, however restricted in cases where a single person in foreground is also
speaking (which cover less than 90 % of the whole data streams). Vallet et al. [33] perform
speaker diarization on a TV talk show dataset which is similar to the Canal9 corpus, however
no details on the performance boost obtained by the fusion procedure are provided.

In the context of a totally different experimental setup, various speaker diarization
approaches have focused on meeting room-related scenaria. However, this is a rather differ-
ent application domain since it requires to take into consideration more complex parameters,
e.g. multiple cameras, speaker positions in the room, microphone arrays and even equip-
ment topology. Noulas et al. [24] used IDIAP A [23] and Edinburgh [24] meeting datasets
to achieve DAR of 67 % and 80 % respectively for the audio modality and 84 % and 89 %
for the fused modality. Furthermore, Friedland et al. [16] used the whole AMI dataset [5]
to achieve Diarization Accuracy Rates of 67.9 % for the audio modality and 74.7 % for the
multimodal problem. Tranter [30] evaluated his multimodal approach on the RT-04F [12]

Table 1 Results of the evaluation process when the number of speakers in the video is not known beforehand

Performance measure % DAR ACP ASP

Video 70.7 ± 8.7 72.7 ± 8.4 74.6 ± 7.5

Audio 84.3 ± 12.3 86.9 ± 11.2 89.9 ± 8.3

Core fusion 85.0 ± 12.4 86.8 ± 11.2 91.9 ± 6.4

Pre+Core fusion 86.1 ± 11.6 87.0 ± 11.3 92.1 ± 5.5
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Table 2 Results of the evaluation process when the number of speakers in the video is provided

Performance measure % DAR ACP ASP

Video 71.4 ± 8.9 73.0 ± 8.0 73.8 ± 7.3

Audio 87.6 ± 9.5 88.9 ± 7.5 89.9 ± 6.7

Core fusion 88.0 ± 8.4 89.5 ± 4.8 90.9 ± 3.4

Pre+Core fusion 89.0 ± 7.7 89.8 ± 6.4 91.6 ± 5.6

meeting corpus and reported results ranging from 73.1 % - 87.0 %. For the particular case
of the audio modality, more detailed corresponding comparisons can be found in [1, 20] and
[25].

Finally, aiming to give an index of the performance, it has to be mentioned that the
whole diarization process (audio, video and fusion) is 1.65× faster than real time when the
number of speakers is known beforehand and 1.35× when the number of speakers in the
stream is unknown. More than half of the consuming time is allocated to the processing of
the video frames and to the feature extraction stage. All the experiments were carried out
using MATLAB 2013a on an Intel Core i7-3770 and 8 GB RAM.

7 Conclusions and future work

We have presented a multimodal method of speaker diarization based on clustering
sequences of features in a reduced space that stems from the application of the Fisher Lin-
ear Semi-Discriminant Analysis method both in the audio and visual domains. We have
extended the results obtained from [20] not only by proposing a way to apply the FLSD
method in the visual-based face diarization problem but also by demonstrating a fusion
approach that combines the results of both modalities to boost the overall performance.
Extensive experimental evaluations lead to the following main conclusions:

– The FLSD approach, when applied on the task of face diarization leads to improved per-
formance which is also independent of the initial feature space and remains relatively
unaffected as the number of faces increases.

– The proposed fusion approach for the task of speaker diarization leads to better results
compared to the best individual modality, i.e. audio.

Our future reseach will mainly focus on improving the fusion process. In particular, a
promising direction of further research could be the addition of an extra step to the afore-
mentioned fusion technique in a late rationale by using the audio labels which, in general,
demonstrate more accurate performance measures, in order to guide the process of the video
clustering. This could be achieved by detecting a speaker obtained from the audio mod-
ule who demonstrates the largest mismatch in the respective video labels so as to use the
FLD method to estimate a 1-D feature space that discriminates between the two classes.
The vector extracted, would be concatenated to the previous FLsD vector leading to a new
transformation to the reduced subspace. Moreover, to further improve the diarization per-
formance, additional research could be focused on utilizing techniques of modeling the
turn-taking behavior of each speaker as well as his role in the conversation in a more
representative and realistic manner [35].
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