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a b s t r a c t 

Estimating the pose of a human in 3D given an image or a video has recently received significant atten- 

tion from the scientific community. The main reasons for this trend are the ever increasing new range 

of applications (e.g., human-robot interaction, gaming, sports performance analysis) which are driven by 

current technological advances. Although recent approaches have dealt with several challenges and have 

reported remarkable results, 3D pose estimation remains a largely unsolved problem because real-life 

applications impose several challenges which are not fully addressed by existing methods. For exam- 

ple, estimating the 3D pose of multiple people in an outdoor environment remains a largely unsolved 

problem. In this paper, we review the recent advances in 3D human pose estimation from RGB images 

or image sequences. We propose a taxonomy of the approaches based on the input (e.g., single image 

or video, monocular or multi-view) and in each case we categorize the methods according to their key 

characteristics. To provide an overview of the current capabilities, we conducted an extensive experi- 

mental evaluation of state-of-the-art approaches in a synthetic dataset created specifically for this task, 

which along with its ground truth is made publicly available for research purposes. Finally, we provide 

an in-depth discussion of the insights obtained from reviewing the literature and the results of our ex- 

periments. Future directions and challenges are identified. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Articulated pose and motion estimation is the task that em-

loys computer vision techniques to estimate the configuration of

he human body in a given image or a sequence of images. This

s an important task in computer vision, being used in a broad

ange of scientific and consumer domains, a sample of which are:

i) Human-Computer Interaction (HCI): Human motion can pro-

ide natural computer interfaces whereby computers can be con-

rolled by human gestures or can recognize sign languages ( Erol

t al., 2007; Song et al., 2012 ); (ii) Human-Robot Interaction: To-

ay’s robots must operate closely with humans. In household en-

ironments, and especially in assisted living situations, a domes-

ic service robot should be able to perceive the human body pose

o interact more effectively ( Droeschel and Behnke, 2011; McColl

t al., 2011 ); (iii) Video Surveillance: In video-based smart surveil-

ance systems, human motion can convey the action of a human
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ubject in a scene. Since manual monitoring of all the data ac-

uired is impossible, a system can assist security personnel to fo-

us their attention on the events of interest ( Chen et al., 2011a;

edai et al., 2009 ); (iv) Gaming: The release of the Microsoft Kinect

ensor ( Shotton et al., 2013a; 2013b ) along with toolkit extensions

hat facilitate the integration of full-body control with games and

irtual Reality applications ( Suma et al., 2011 ) are the most illus-

rative examples of how human motion capture can be used in the

aming industry; (v) Sport Performance Analysis: In most sports,

he movements of the athletes are studied in great depth from

ultiple views and, as a result, accurate pose estimation systems

an help in analyzing these actions ( Fastovets et al., 2013; John-

on and Everingham, 2010; Unzueta et al., 2014 ); (vi) Scene Under-

tanding: Estimating the 3D human pose can be used in a human-

entric scene understanding setup to help in the prediction of the

workspace” of a human in an indoor scene ( Gupta et al., 2011;

heng et al., 2015 ); (vii) Proxemics Recognition: Proxemics recog-

ition refers to the task of understanding how people interact. It

an be combined with robust pose estimation techniques to di-

ectly decide whether and to what extent there is an interaction

etween people in an image ( Yang et al., 2012 ) and at the same

ime improves the pose estimation accuracy since it addresses oc-

http://dx.doi.org/10.1016/j.cviu.2016.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.09.002&domain=pdf
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Fig. 1. A summary of real-life applications of human motion analysis and pose estimation (images from left to right and top to bottom): Human-Computer Interaction, Video 

Surveillance, Gaming, Physiotherapy, Movies, Dancing, Proxemics, Sports, Human-Robot Interaction. Flickr image credits: The Conmunity – Pop Culture Geek, Intel Free Press, 

Patrick Oscar Boykin, Rae Allen, Christopher Prentiss Michel, Yuiseki Aoba, DIUS Corporate, Dalbra J.P., and Grook Da Oger. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Depiction of the number of papers published during the last decade that 

include the keywords “3D human pose estimation”, “3D motion tracking”, “3D pose 

recovery”, and “3D pose tracking” in their title after duplicate and irrelevant results 

are discarded. 
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1 Results of the search on May 1 st , 2016. We excluded searches related to patents 

or articles which other scholarly articles have referred to, but which cannot be 
clusions between body parts; (viii) Estimating the anthropometry

of a human from a single image ( Barron and Kakadiaris, 20 0 0;

2003; Kakadiaris et al., 2016 ); (ix) 3D Avatar creation ( Barmpoutis,

2013; Zhang et al., 2013 ) or controlling a 3D Avatar in games

( Pugliese et al., 2015 ); (x) Understanding the camera wearer’s ac-

tivity in an egocentric vision scenario ( Jiang and Grauman, 2016 );

and (xi) Describing clothes in images ( Chen et al., 2012; Yamaguchi

et al., 2012 ) which can then be used to improve the pose identifi-

cation accuracy. 

In Fig. 1 some of the aforementioned applications are depicted,

which along with recent technological advances, and the release of

new datasets have resulted in an increasing attention of the scien-

tific community on the field. However, human pose estimation still

remains an open problem with several challenges, especially in the

3D space. 

Fig. 2 shows the number of publications with the keywords: (i)

“3D human pose estimation”, (ii) “3D motion tracking”, (iii) “3D

pose recovery”, and (iv) “3D pose tracking” in their title after du-

plicate and not relevant results are discarded. Note that, there are

other keywords that return relevant publications such as “3D hu-

man pose recovery” ( Chen et al., 2011a ) or “3D human motion

tracking” ( Kakadiaris and Metaxas, 20 0 0 ). Thus, Fig. 2 does not

cover all the methods we discuss but, even restricted to this par-

f

icular search, still shows the increase of interest by the scientific

ommunity. 1 

To cover the recent advances in the field and at the same time

o be effective in our approach, we narrowed this survey to a class
ound online. 



N. Sarafianos et al. / Computer Vision and Image Understanding 152 (2016) 1–20 3 

o  

h  

R  

l  

a  

l  

s  

E  

b  

o  

a

1

 

A  

o  

m  

d  

i  

t  

d  

a  

t  

t  

S  

3  

w  

r  

t

 

v  

r  

t  

t  

b  

e  

e  

t  

S  

i  

o  

t  

c  

m  

i  

o

1

 

m  

i  

s  

b  

o  

b  

a  

p  

p  

e  

h  

p  

o  

a  

t  

Fig. 3. Pool of the stages of a common 3D human pose estimation system. Given 

an input signal the 3D pose is estimated by employing some or even all of the 

depicted steps. 
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f techniques which are currently the most popular, namely the 3D

uman body pose estimation from RGB images. Apart from using

GB data, another major class of methods, which have received a

ot of attention lately, are the ones using depth information such

s RGB-D. Although an increasing number of papers has been pub-

ished on this topic during the last few years with remarkable re-

ults ( Shotton et al., 2013b; Pons-Moll et al., 2013, 2015 ), 3D Pose

stimation from RGB-D images will not be covered in this work

ecause Helten et al. (2013) and Ye et al. (2013) published surveys

n this topic recently which cover in detail the recent advances

nd trends in the field. 

.1. Previous surveys and other resources 

The reader is encouraged to refer to the early works of

ggarwal and Cai (1997) and Gavrila (1999) to obtain an overview

f the initial methods in the field. The most recent surveys on hu-

an pose estimation by Moeslund et al. (2006) and Poppe (2007) ,

ate back to 2006 and 2007, respectively, and since they cover

n great breadth and depth the whole vision-based human mo-

ion capture domain, they are highly recommended. However, they

o not focus specifically on the 3D human pose estimation and

re now outdated. Other existing reviews, focus on more specific

asks. For instance, a review on view-invariant pose representa-

ion and estimation is offered by Ji and Liu (2010) . In the work of

minchisescu (2008) , an overview of the problem of reconstructing

D human motion from monocular image sequences is provided,

hereas Holte et al. (2012) present a 3D human pose estimation

eview, which covers only model-based methods in multi-view set-

ings. 

The primary goal of our review is to summarize the recent ad-

ances of the 3D pose estimation task. We conducted a systematic

esearch of single-view approaches published in the 2008–2015

ime frame. For multi-view scenarios, we focused on methods ei-

her published after the work of Holte et al. (2012) or published

efore, but not discussed in their work. The selected time frames

nsure that all approaches discussed in this survey are not refer-

nced in previous reviews. However, for an incipient overview of

his field, the reader is encouraged to refer to the publications of

igal et al. (2010) ; Sigal and Black (2010) where, inspired by the

ntroduction of the HumanEva dataset, they present some aspects

f the image- and video-based human pose and motion estima-

ion tasks. In the recent work of Sigal (2014) , the interested reader

an find a well-structured overview of the articulated pose esti-

ation problem. Finally, Moeslund et al. (2011) offer an illustrative

ntroduction to the problem and provide a detailed analysis and

verview of different human pose estimation approaches. 

.2. Taxonomy and scope of this survey 

Fig. 3 presents the pool of steps which apply to most 3D hu-

an pose estimation systems and illustrates all the stages covered

n this review. Three-dimensional pose estimation methods include

ome of the action steps shown which are: (i) the use of a priori

ody model which determines if the approach will be model-based

r model-free, (ii) the utilization of 2D pose information which can

e used not only as an additional source of information but also

s a way to measure the accuracy by projecting the estimated 3D

ose to the 2D image and comparing the error, (iii) the use of pre-

rocessing techniques, such as background subtraction, (iv) feature

xtraction/selection approaches that obtain key features from the

uman subject which are fed to the estimation algorithms, (v) the

rocess of obtaining an initial 3D pose which is used thereafter by

ptimization techniques that are employed to estimate the 3D pose

nd (vi) the pose estimation approach proposed each time that of-

en is discussed along with constraints that are enforced to dis-
ard anthropometrically unrealistic poses, and finally how the final

ose is inferred. A more specific categorization of the approaches

ouldn’t be practical since different approaches follow different

aths according to the problem they are trying to address. 

Despite the increasing interest from the scientific community, a

ell-structured taxonomy for the 3D human pose estimation task

as not been proposed. To group approaches with similar key char-

cteristics, we categorized the problem based on the input signal.

e investigate articulated 3D pose and motion estimation when

he input is a single image or a sequence of RGB frames. In the

atter case approaches focus on capturing how the 3D human pose

hanges over time from an image sequence. A noteworthy amount

f publications address the articulated 3D human pose estimation

roblem in multi-view scenarios. Since these approaches overcome

ome difficulties, while at the same time introducing new chal-

enges to the pose estimation task, they are discussed separately

n each case. 

Similar to the aforementioned surveys and resources, we ap-

roach the pose estimation methods focusing on how they inter-

ret the structure of the body: generative (model-based), discrim-

native (model-free), part-based which is a subcategory of gener-

tive models, and finally hybrid approaches. The taxonomy of 3D

ose Estimation methods is depicted in Fig. 4 . 

Generative model approaches (also referred to as model-based

r top-down approaches) employ a known model based on

 priori information such as specific motion ( Daubney et al.,

012 ) and context ( Ning et al., 2008 ). The pose recovery process

omprises two distinct parts, the modeling and the estimation

 Sminchisescu, 2002 ). In the first stage, a likelihood function is

onstructed by considering all the aspects of the problem such as

he image descriptors, the structure of the human body model, the

amera model and also the constraints being introduced. For the

stimation part, the most likely hidden poses are predicted based

n image observations and the likelihood function. 

Another category of generative approaches found in the lit-

rature is part-based (also referred to as bottom-up approaches),

hich follows a different path by representing the human skele-

on as a collection of body parts connected by constraints im-

osed by the joints within the skeleton structure. The Pictorial

tructure Model (PSM) is the most illustrative example of part-

ased models. It has been mainly used for 2D human pose es-

imation ( Eichner et al., 2012; Felzenszwalb and Huttenlocher,

005; Pishchulin et al., 2013 ) and has lately been extended for

D pose estimation ( Belagiannis et al., 2014a; Burenius et al.,

013 ). It represents the human body as a collection of parts ar-

anged in a deformable configuration. It is a powerful body model

hich results in an efficient inference of the respective parts. An

xtension of the PSM is the Deformable Structures model pro-

osed by Zuffi et al. (2012) , which replaces the rigid part tem-
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Image Video

Mul�-view

Part-based

Discrimina�ve

Learning-
based

Hybrid

Genera�ve

Example-
based

Genera�ve Discrimina�ve

Fig. 4. Taxonomy of 3D Pose Estimation methods. Given an image or a video in a monocular or multi-view setup, methods can be classified as generative (a subcategory 

of which are part-based approaches), discriminative (which can be classified into learning-based and example-based) and finally hybrid which are a combination of the 

previous two. 
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plates with deformable parts to capture body shape deforma-

tions and to model the boundaries of the parts more accurately.

A graphical model which captures and fits a wide range of hu-

man body shapes in different poses is proposed by Zuffi and

Black (2015) . It is called Stitched Puppet (SP) and is a realistic

part-based model in which each body part is represented by a

mean shape. Two subspaces of shape deformations are learned us-

ing principal component analysis (PCA), independently accounting

for variations in intrinsic body shape and pose-dependent shape

deformations. 

Discriminative approaches (also referred to as model-free) do not

assume a particular model since they learn a mapping between

image or depth observations and 3D human body poses. They

can be further classified into learning-based and example-based

approaches. Learning-based approaches learn a mapping function

from image observations to the pose space, which must general-

ize well for a new image from the testing set ( Huang and Yang,

2009a; Sedai et al., 2010 ). In example-based approaches, a set of

exemplars with their corresponding pose descriptors is stored and

the final pose is estimated by interpolating the candidates obtained

from a similarity search ( Grauman et al., 2003; Huang and Yang,

2009a ). Such methods benefit in robustness and speed from the

fact that the set of feasible human body poses is smaller than the

set of anatomically possible ones ( Van den Bergh et al., 2009 ). The

main advantage of generative methods is their ability to infer poses

with better precision since they generalize well and can handle

complex human body configurations with clothing and accessories.

Discriminative approaches have the advantage in execution time

because the employed models have fewer dimensions. According

to Sigal and Black (2010) , the performance of discriminative meth-

ods depends less on the feature set or the inference method than

it does for generative approaches. 

Additionally, there are hybrid approaches , in which discrimina-

tive and generative approaches are combined to predict the pose

more accurately. To combine these two methods, the observation

likelihood obtained from a generative model is used to verify the

pose hypotheses obtained from the discriminative mapping func-

tions for pose estimation ( Rosales and Sclaroff, 2006; Sedai et al.,

2013b ). For example, Salzmann and Urtasun (2010) introduced a

unified framework that combines model-free and model-based ap-

proaches by introducing distance constraints into the discrimina-

tive methods and employing generative methods to enforce con-

straints between the output dimensions. An interesting discussion
n generative and discriminative approaches can be found in the

ork of Bishop and Lasserre (2007) . 

In the following, we present a detailed analysis of 3D pose es-

imation techniques in different setups. The rest of the paper is

rganized as follows. In Section 2 , we discuss the main aspects of

he body model employed by model-based methods and the most

ommon features and descriptors used. In Section 3 , we present

he proposed taxonomy by discussing the key aspects of pose es-

imation approaches from a single image. Section 4 presents the

ecent advances and trends in 3D human pose estimation from a

equence of images. In both sections, we discuss separately single-

nd multi-view input approaches. In Section 5 , we discuss some of

he available datasets, summarize the evaluation measures found

n the literature, and offer a summary of performance of several

ethods on the HumanEva dataset. Section 6 introduces a new

ynthetic dataset in which humans with different anthropometric

easurements perform actions. An evaluation of the performance

f state-of-the-art 3D pose estimation approaches is also provided.

e conclude this survey in Section 7 with a discussion of promis-

ng directions for future research. 

. Human body model and feature representation 

The human body is a very complex system composed of

any limbs and joints and a realistic estimation of the posi-

ion of the joints in 3D is a challenging task even for humans.

arinoiu et al. (2013) investigated how humans perceive the pic-

orial 3D pose space, and how this perception can be connected

ith the regular 3D space we move in. Towards this direction, they

reated a dataset which, in addition to 2D and 3D poses, contains

ynchronized eye movement recordings of human subjects shown

 variety of human body configurations and measured how accu-

ately humans re-create 3D poses. They found that people are not

ignificantly better at re-enacting 3D poses in laboratory environ-

ents given visual stimuli, on average, than existing computer vi-

ion algorithms. 

Despite these challenges, automated techniques provide valu-

ble alternatives for solving this task. Model-based approaches em-

loy a human body model which introduces prior information to

vercome this difficulty. The most common 3D human body mod-

ls in the literature are the skeleton (or stick figure), a common

epresentation of which is shown in Fig. 5 along with its struc-

ure, and shape models. They both define kinematic properties,
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Fig. 5. Left: Human skeleton body model with 15 joints. Right: Tree-structured representation with the pelvis as the root node (Sh. - Shoulder, Elb. - Elbow and Ank. - 

Ankle). 
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hereas the shape models also define appearance characteristics.

he cylindrical and the truncated cone body models are illustra-

ive examples of shape models. After constructing the body model,

onstraints are usually enforced to constrain the pose parameters.

inematic constraints, for example, ensure that limb lengths, limb-

ength proportions, and joint angles follow certain rules. Other

opular constraints found in the literature are occlusion constraints

hat allow more realistic poses in which some body parts (legs or

rms) are occluded by others and prevent double-counting phe-

omena, appearance constraints introduced by the symmetry of

eft and right body part appearances ( Gupta et al., 2008 ), and

moothness constraints in the angle of the joints which are used

o avoid abrupt changes between sequential video frames. 

Whether a body model is employed or not (model-based or

odel-free approaches), the next action step in the study of 3D

uman motion, is the accurate feature extraction from the input

ignal. Early approaches in the field used low-level features such

s edges, color, optical flow or silhouettes which are obtained af-

er performing background subtraction. Silhouettes are invariant to

exture and lighting but require good segmentation of the subject,

nd can easily lose specific details of human parts. Image descrip-

ors are then employed to describe these features and to reduce

he size of the feature space. Common feature representations em-

loyed in the literature include the use of Scale Invariant Feature

ransforms (SIFT) ( Müller and Arens, 2010 ), Shape Context (SC)

 Amin et al., 2013 ) and Appearance and Position Context (APC) de-

criptors ( Ning et al., 2008 ). APC is a sparse and local image de-

criptor, which captures the spatial co-occurrence and context in-

ormation of the local structure as well as their relative spatial po-

itions. Histograms of Oriented Gradients (HoG) have been used

 lot lately ( Gkioxari et al., 2013; Yang and Ramanan, 2011 ), be-

ause they perform well when dealing with clutter and can capture

he most discriminative information from the image. Instead of ex-

racting features from the image, some approaches ( Chen et al.,

011a; Huang and Yang, 2009a ) select the most discriminative fea-

ures. Pons-Moll et al. (2014) proposed posebits which are seman-

ic pose descriptors which represent geometrical relationships be-

ween body parts and can take binary values depending on the an-

wer to simple questions such as “Left foot in front of the torso”.

osebits can provide sufficient 3D pose information without requir-

ng 3D annotation, which is a difficult task, and can resolve depth

mbiguities. 

. Recovering 3D human pose from a single image 

The reconstruction of an arbitrary configuration of 3D points

rom a single monocular RGB image has three characteristics that

ffect its performance: (i) it is a severely ill-posed problem because
imilar image projections can be derived from different 3D poses;

ii) it is an ill-conditioned problem since minor errors in the loca-

ions of the 2D body joints can have large consequences in the 3D

pace; and (iii) it suffers from high dimensionality ( Agarwal and

riggs, 2006 ). Existing approaches propose different solutions to

ompensate for these constraints and are discussed in Section 3.1 . 

.1. Three-dimensional human pose estimation from a single 

onocular image 

The recovery of 3D human poses in monocular images is a dif-

cult task in computer vision since highly nonlinear human mo-

ions, pose and appearance variance, cluttered backgrounds, occlu-

ions (both from other people or objects and self-occlusions), and

he ambiguity between 2D and 3D poses are common phenomena.

he papers described in this category estimate the human pose

xplicitly from a single monocular image and are summarized in

able 1 . Publications that fit into both the single image and the

ideo categories are discussed in Section 4 . 

Deep-Learning Methods: Deep-learning methods are 

epresentation-learning approaches ( Bengio et al., 2013 ) com-

osed of multiple non-linear transformations. Feature hierarchies

re learned with features from higher and more abstract levels of

he hierarchy formed by the composition of lower level features

 Bengio, 2009; LeCun et al., 2015 ). Depending on the method

sed and how the architecture is set-up, it finds applications

n both unsupervised and supervised learning as well as hybrid

pproaches ( Deng and Yu, 2014 ). After its early introduction by

inton et al. (2006) ; Hinton and Salakhutdinov (2006) , employing

eep architectures, is found to yield significantly better results

n many computer vision tasks such as object recognition, image

lassification and face verification ( Krizhevsky et al., 2012; Szegedy

t al., 2013; Taigman et al., 2014 ). Following that, approaches

hich employ deep-learning techniques to address the 2D pose

stimation task with great success, have been proposed ( Charles

t al., 2016; Chen and Yuille, 2014; Tompson et al., 2014; Toshev

nd Szegedy, 2014 ) and only recently the 3D pose estimation

ask was approached using deep learning. In the work of Li and

han (2014) , deep convolutional networks (ConvNets) are trained

or two distinct approaches: (i) they jointly train the pose re-

ression task with a set of detection tasks in a heterogeneous

ulti-task learning framework and (ii) pre-train the network using

he detection tasks, and then refine the network using the pose

egression task alone. They show that the network in its last

ayers has an internal representation for the positions of the left

or right) side of the person, and thus, has learned the structure

f the skeleton and the correlation between output variables.

i et al. (2015) proposed a framework which takes as an input an
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Table 1 

3D human pose estimation from a single monocular RGB image. Wherever a second reference is provided, it denotes the availability of source code for the method. The 

Body Model column indicates whether a body model is employed. The Method Highlights column reflects the most important steps in each approach. 

Year First author Body 

model 

Method highlights Evaluation 

datasets 

Evaluation metrics 

2016 Yasin et al. (2016a) , 

Yasin et al. (2016b) 

Yes Training: 3D poses are projected to 2D and a regression model is learned from 

the 2D annotations; Testing: 2D pose is estimated, the nearest 3D poses are 

predicted; final 3D pose is obtained by minimizing the projection error 

HumanEva-I, 

Human3.6M 

3D pose 

2015 Li et al. (2015) No The input is an image and a potential 3D pose and the output a score 

matching value; ConvNet for image feature extraction; Two sub-networks for 

transforming features and pose into a joint embedding 

Human3.6M MPJPE 

2014 Kostrikov and Gall (2014) Yes Predict the relative 3D joint position using depth sweep regression forests 

trained with three groups of features; 3DPS model for inference 

Human3.6M, 

HumanEva-I 

3D, 3D pose 

2014 Li and Chan (2014) No Train a deep ConvNet; and joint point regression to estimate the positions of 

joint points relative to the root position and joint point detection to classify 

whether one local window contains the specific joint 

Human3.6M MPJPE 

2014 Wang et al. (2014a) , 

Wang et al. (2014b) 

Yes 2D part detector and a sparse basis representation in an overcomplete 

dictionary; Anthropometric constraints are enforced and an L 1 -norm 

projection error metric is used; Optimization with ADMM 

HumanEva-I, 

CMU MoCap, 

UVA 3D 

3D pose 

2014 Zhou et al. (2015a) , 

Zhou et al. (2015b) 

Yes Convex formulation by using the convex relaxation of the orthogonality 

constraint; ADMM for optimization 

CMU MoCap 3D 

2013 Radwan et al. (2013) Yes Employ a 2D part detector with an occlusion detection step; Create multiple 

views synthetically with a twin-GPR in a cascaded manner; Kinematic and 

orientation constraints to resolve remaining ambiguities 

HumanEva-I, 

CMU MoCap 

3D pose 

2013 Simo-Serra et al. (2013) Yes Bayesian approach using a model with discriminative 2D part detectors and a 

probabilistic generative model based on latent variables; Inference using the 

CMA-ES 

HumanEva-I, 

TUD Stadmitte 

3D, 3D pose 

2012 Brauer et al. (2012) Yes ISM to obtain vote distributions for the 2D joints; Example-based 3D prior 

modeling and comparison of their projections with the respective joint votes 

UMPM MJAE, Orientation 

Angle 

2012 Ramakrishna et al. (2012a) , 

Ramakrishna et al. (2012b) 

Yes Enforce anthropometric constraints and estimate the parameters of sparse 

linear representation in an overcomplete dictionary with a matching pursuit 

algorithm 

CMU MoCap 3D 

2012 Simo-Serra et al. (2012) Yes 2D part detector and a stochastic sampling to explore each part region; Set of 

hypotheses enforces reprojection and length constraints; OCSVM to find the 

best sample 

HumanEva-I, 

TUD Stadmitte 

3D, 3D pose 

2011 Greif et al. (2011) No Train an action-specific classifier on improved HoG features; use a people 

detector algorithm and treat 3D pose estimation as a classification problem 

HumanEva-I 3D 

2009 Guo and Patras (2009) No Pose tree is learned by hierarchical clustering; Multi-class classifiers are 

learned and the relevance vector machine regressors at each leaf node 

estimate the final 3D pose 

HumanEva-I 3D 

2009 Huang and Yang (2009a) , 

Huang and Yang (2009b) 

No Occluded test images as a sparse linear combination of training images; 

Pose-dependent (HoG) feature selection and L 1 -norm minimization to find 

the sparest solution 

HumanEva-I, 

Synthetic 

3D, MJAE 

2008 Ning et al. (2008) No Employ an APC descriptor and learn in a jointly supervised manner the visual 

words and the pose estimators 

HumanEva-I, 

Quasi-synthetic 

3D, MJAE 
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image and a 3D pose and produces a score value that represents

a multi-view similarity between the two inputs (i.e., whether

they depict the same pose). A ConvNet for feature extraction is

employed and two sub-networks are used to perform a non-linear

transformation of the image and pose into a joint embedding.

A maximum-margin cost function is used during training which

enforces a re-scaling margin between the score values of the

ground truth image-pose pair and the rest image-pose pairs. The

score function is the dot-product between the two embeddings.

However, the lack of training data for ConvNet-based techniques

remains a significant challenge. Towards this direction, the meth-

ods of Chen et al. (2016) and Rogez and Schmid (2016) propose

techniques to synthesize training images with ground truth pose

annotations. Finally, the task of estimating the 3D human pose

from image sequences has also been explored using deep learning,

Elhayek et al. (2015 , 2016) ; Hong et al. (2015) ; Tekin et al. (2016a ,

2016b) ; Zhou et al. (2016b) and the respective methods are going

to be discussed individually in Sections 4.1 and 4.2 . 

Two-dimensional detectors for 3D pose estimation: To overcome

the difficulty and the cost of acquiring images of humans along

with their respective 3D poses, Yasin et al. (2016a) proposed a

dual-source approach which employs images with their annotated

2D poses and 3D motion capture data to estimate the pose of

a new test image in 3D. During training, 3D poses are projected

to a 2D space and the projection is estimated from the anno-

tated 2D pose of the image data through a regression model. At
esting time, the 2D pose of the new image is first estimated

rom which the most likely 3D poses are retrieved. By minimiz-

ng the projection error the final 3D pose is obtained. Aiming

o perform 3D human pose estimation from noisy observations,

imo-Serra et al. (2012) proposed a stochastic sampling method.

s a first step, they employ a state-of-the-art 2D body part de-

ector ( Yang and Ramanan, 2011 ) and then convert the bounding

oxes of the parts to a Gaussian distribution by computing the co-

ariance matrix of the classification scores within each bounding

ox. To obtain a set of ambiguous candidate poses from the sam-

les generated in the 3D space by the Gaussian distribution, they

se the Covariance Matrix Adaptation Evolution Strategy (CMA-

S) to simultaneously minimize re-projection and length errors.

he most anthropometric pose between the candidates is deter-

ined by using a One-Class Support Vector Machine (OCSVM). To

xploit the advantages of both generative and discriminative ap-

roaches, Simo-Serra et al. (2013) proposed a hybrid Bayesian ap-

roach. Their method comprises 2D HoG-based discriminative part

etectors which constrain the 2D location of the body parts and

 probabilistic generative latent variable model which (i) maps

oints from the high dimensional 3D space to the lower dimen-

ional latent space, (ii) specifies the dependencies between the la-

ent states, (iii) enforces anthropometric constraints, and (iv) pre-

ents double counting. To infer the final 3D pose they use a vari-

tion of CMA-ES. Brauer et al. (2012) employ a slightly modified

mplicit Shape Model (ISM) to generate vote distributions for po-
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ential 2D joint locations. Using a Bayesian formulation, 3D and

D poses are estimated by modeling (i) the pose prior following

n example-based approach and (ii) the likelihood by comparing

he projected joint locations of the exemplar poses with the corre-

ponding nearby votes. 

Discussion of Norms and Camera Parameter Estimation: To re-

olve the ambiguities that arise when performing pose estimation

rom a single image, some methods also estimate the relative pose

f the camera. The approaches of Ramakrishna et al. (2012a) and

ang et al. (2014a) belong to this category. Both methods require

he locations of the joints in the 2D space as an input, use a sparse

asis model representation, and employ an optimization scheme

hich alternatively estimates the 3D pose estimation and the cam-

ra parameters. In the first case, the authors constrain the sum of

he limb lengths and use a matching pursuit algorithm to perform

econstruction. Their method can also recover the 3D pose of mul-

iple people in the same view. In the latter case, L 1 -norm is used

s a reprojection error metric that is more robust when the joint

ocations in 2D are inaccurate. This approach also enforces not

nly limb length constraints, which eliminate implausible poses,

ut also L 1 -norm constraints on the basis coefficients. A discussion

n why L 2 -norms are insufficient for estimating 3D pose similarity

s provided by Chen et al. (2011b) . However, Zhou et al. (2015a,

016c) argue that the solution to such alternating minimization

pproaches is sensitive to initialization. Using the 2D image land-

arks as an input, they used an augmented shape-space model

o give a linear representation of both intrinsic shape deforma-

ion and extrinsic viewpoint changes. They proposed a convex for-

ulation that guarantees global optimality and solved the opti-

ization problem with a novel algorithm based on the Alternat-

ng Direction Method of Multipliers (ADMM) and the proximal op-

rator of the spectral norm. Their method is applicable not only

o human pose but also to car and face reconstruction. An ap-

roach which also uses a sparse image representation and solves

 convex optimization problem with the L 1 -norm is proposed by

uang and Yang (2009a) . Aiming to estimate 3D human pose when

umans are occluded, they proposed a method which exploits the

dvantages of both example-based and learning-based approaches

nd represents each test sample as a sparse linear combination of

raining samples. The background clutter in the test sample is re-

laced with backgrounds from the training images which results

n pose-dependent feature selection. They use a Gaussian process

egressor to learn the mapping between the image features (HoG

rom original or corrupted images and recovered features) and the

orresponding 3D parameters. They observed that when a sparse

inear representation of the training images is used for the probes,

he set of coefficients from the corrupted (i.e., occluded) test im-

ge is recovered with minimum error via solving an L 1 -norm min-

mization problem. 

Discriminative Approaches: Ning et al. (2008) proposed a dis-

riminative bag of words approach. As a first step, they utilize an

PC descriptor, and learn in a supervised manner a separate metric

or each visual word from the labeled image-to-pose pairs. They

se a Bayesian Mixture of Experts (BME) model to represent the

ulti-modal distribution of the 3D human pose conditioned on the

eature space and also a gradient ascent algorithm which jointly

ptimizes the metric learning and the BME model. Kostrikov and

all (2014) approached the pose estimation task from a different

erspective, and proposed a discriminative depth sweep forest re-

ression approach. After extracting features from 2D patches sam-

led from different depths, the proposed method sweeps with a

lane through the 3D volume of potential joint locations and uses

 regression forest that learns 2D-2D or 3D-3D mappings from the

elative feature locations. Thus, they predict the relative 3D posi-

ion of a joint, given the hypothesized depth of the feature. Finally,

he pose space is constrained by employing a 3D pictorial structure
odel used to infer the final pose. Okada and Soatto (2008) intro-

uced a method comprising three main parts that estimates the

D pose in clutter backgrounds. Given a test image with a win-

ow circumscribing a specific subject, (i) they extract a HoG-based

eature vector of the window; (ii) they use a Support Vector Ma-

hine (SVM) classifier that selects the pose cluster which the cur-

ent pose belongs to; and (iii) having taken into consideration that

he relevance of features selected depends on the pose, they re-

over the 3D pose using a piecewise linear regressor of the se-

ected cluster. 

Guo and Patras (2009) and Jiang (2010) proposed exemplar-

ased approaches. In the first approach a tree is learned by hi-

rarchical clustering on pose manifold via affinity propagation

nd the final 3D pose is estimated by applying the learned rele-

ance vector machine regressor that is attached to the leaf node

o which the example is classified. In the second method, the

D pose is reconstructed by using a k-dimensional tree (kd-tree)

o search in a database containing millions of exemplars of op-

imal poses for the optimal upper body and lower body pose.

nother interesting approach is proposed by Urtasun and Dar-

ell (2008) . They developed an online activity-independent method

o learn a complex appearance-to-pose mapping in large training

ets using probabilistic regression. They use a (consistent in pose

pace) sparse Gaussian process model which: (i) forms local mod-

ls (experts) for each test point, (ii) handles the mapping inaccu-

acy caused by multimodal outputs, and (iii) performs fast infer-

nce. The local regressors at each test point overcome the bound-

ry problems that occur in offline (clustering) approaches. Finally,

reif et al. (2011) treat pose estimation as a classification problem.

hey consider the full body pose as a combination of a 3D pose,

nd a viewpoint, and define classes that are then learned by an ac-

ion specific forest classifier. The input of the classification process

re lower-dimensional improved HoG ( Felzenszwalb et al., 2010 )

eatures. The proposed method does not require labeled viewpoints

nd background subtracted images, and the action performed by

he subject does not need to be cyclic. 

The approach of Radwan et al. (2013) differentiates itself from

he rest since it performs pose estimation from a single im-

ge by utilizing information from multiple synthetically created

iews. First, they employ the 2D part detector of Yang and Ra-

anan (2011) to which they add an extra occlusion detection step

o overcome self-occlusions. Then, they use the twin Gaussian Pro-

ess Regression (GPR) in a cascaded manner to generate synthetic

iews from different viewpoints, and finally impose kinematic and

rientation constraints on the 3D ambiguous pose resulting from

he projection of a 3D model onto the initial pose. 

.2. Three-dimensional human pose estimation from a single image 

n a multiple camera view scenario 

Resolving the ambiguities that arise in the 3D space would be a

uch easier task if depth information obtained from a sensor such

s the Microsoft Kinect ( Shotton et al., 2013b ) was used. However,

inect has a specific range within which it operates successfully

nd it cannot be used for outdoor applications. Inertial sensors

IMUs) are also frequently employed ( Pons-Moll et al., 2010; von

arcard et al., 2016 ) because they do not suffer from such limita-

ions. Nevertheless, marker-based solutions are expensive and in-

rusive by nature Pons-Moll et al. (2011) since several units need

o be attached to the human body. Two approaches that use mul-

iple view images to overcome these difficulties and to construct a

ore realistically applicable pose estimation system are presented

n Table 2 and described below. 

Burenius et al. (2013) implemented a framework for 3D pic-

orial structures for multi-view articulated pose estimation. First,

hey compute the probability distribution for the position of body
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Table 2 

3D human pose estimation from a single RGB image in a multi-view setup. The Body Model column indicates whether a body model is employed. The Method Highlights 

column reflects the most important steps in each approach. 

Year First author Body model Method highlights Evaluation datasets Evaluation metrics 

2013 Amin et al. (2013) Yes Infer 3D pose over a set of 2D projections of the 3D pose in each 

camera view; Enforce appearance and spatial correspondence 

constraints across views; Recover final pose by triangulation 

HumanEva-I, MPII 

Cooking 

3D 

2013 Burenius et al. (2013) Yes Use a tree graph (3DPS) to connect the parts extracted from 2D part 

detectors; Discretize state space and use the max-product algorithm 

with view, skeleton, and joint angle constraints 

KTH Multiview 

Football II 

3D PCP 
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parts with 2D part detectors based on HoG features. The parts

are connected in a tree graph and the dependency structure of

the variables of the model is represented through a Bayesian net-

work. A weak pose prior (translation and rotation) is imposed to

the pose and dynamic programming is used to discretize the state

space. For the translation prior, they use a max-product algorithm

with two variations according to the constraints imposed. A two-

step algorithm is finally employed to deal with the double count-

ing phenomenon which is a typical problem in tree structures. An

approach which employs a 2D pictorial structure model in multi-

view scenarios is proposed by Amin et al. (2013) . Instead of using a

3D body model, they infer the 3D pose over a set of 2D projections

of the 3D pose in each camera view. The 2D pictorial structures

model is extended with flexible parts, color features, multi-modal

pairwise terms, and mixtures of pictorial structures. Appearance

and spatial correspondence constraints across views are enforced

to take advantage of the multi-view setting. The final 3D pose is

recovered from the 2D projection by triangulation. 

4. Recovering 3D human pose from a sequence of images 

Besides high dimensionality, which is always an issue, a diffi-

culty that arises when trying to locate the 3D position of the body

joints from a sequence of images is that the shape and appear-

ance of the human body may change drastically over time due to:

(i) background changes or camera movement, especially outside of

controlled laboratory settings; (ii) illumination changes; (iii) rota-

tions in-depth of limbs; and (iv) loosely fitting clothing. 

4.1. Three-dimensional human pose estimation from a sequence of 

monocular images 

Most of the video data used nowadays are captured from a sin-

gle camera view. Even in multi-view scenarios (e.g., surveillance

systems) the person is not always visible from all the cameras

at the same time. As a result, estimating the 3D pose of a hu-

man from monocular images is an important task. According to

Sigal (2014) , accurate pose estimation on a per frame basis is an

ill-posed problem and methods that exploit all available informa-

tion over time ( Andriluka et al., 2010; Andriluka and Sigal, 2012 )

can improve performance. The papers in this category focus on es-

timating the 3D human pose from a sequence of single-view im-

ages and are presented in Table 3 . 

Discriminative approaches: In the work of Tekin et al.

(2016b) spatiotemporal information is exploited to reduce depth

ambiguities. They employ 2 ConvNets to first align (i.e., shifting

to compensate for the motion) the bounding boxes of the hu-

man in consecutive frames and then refine them so as to cre-

ate a data volume. 3D HoG descriptors are computed and the 3D

pose is reconstructed directly from the volume with Kernel Ridge

Regression (KRR) and Kernel Dependency Estimation (KDE). They

demonstrated that (i) when information from multiple frames is

exploited, challenging ambiguous poses where self-occlusion oc-

curs can be estimated more accurately and (ii) the linking of de-

tections in individual frames in an early stage, followed by enforc-
ng temporal consistency at a later stage improves the performance

ignificantly. ConvNets were also employed in a deep learning re-

ression architecture work of Tekin et al. (2016a) . To encode de-

endencies between joint locations, an auto-encoder is trained on

xisting human poses to learn a structured latent representation

f the human pose in 3D. Following that, a ConvNet architecture

aps through a regression framework the input image to the la-

ent representation and the decoding layer is then used to estimate

he 3D pose from the latent to the original 3D space. 

An interesting approach from Yamada et al. (2012) addresses

he problem of dataset bias in discriminative 3D pose estimation

odels. Under covariate shift setup, a mapping is learned based on

 weighted set of training image-pose pairs. The training instances

re re-weighted by the importance weight to remove the training

et bias. They finally propose weighted variants of kernel regres-

ion and twin Gaussian processes to illustrate the efficacy of their

pproach. Chen et al. (2011a) proposed an example-based approach

hich focuses on the efficient selection of features by optimizing a

race-ratio criterion which measures the score of the selected fea-

ure component subset. During pose retrieval, a sparse representa-

ion is used which enforces a sparsity constraint that ensures that

emantically similar poses have a larger probability to be retrieved.

sing the selected pose candidates of each frame, a sequential op-

imization scheme is selected which employs dynamic program-

ing to get a continuous pose sequence. Sedai et al. (2010) intro-

uced a learning-based method that exploits the complementary

nformation of the shape (histogram of shape context) and appear-

nce (histogram of local appearance context) features. They cluster

he pose space into several modular regions and learn regressors

or both feature types and their optimal fusion scenario in each

egion to exploit their complementary information ( Sedai et al.,

013a ). 

Latent variable models: Latent variables are often used in the lit-

rature ( Taylor et al., 2010; Yao et al., 2011 ), because it is often

ifficult to obtain accurate estimates of part labels because of pos-

ible occlusions. To alleviate the need for large labeled datasets,

ian et al. (2013) proposed a discriminative approach that em-

loys Latent Variable Models (LVMs) that successfully address over-

tting and poor generalization. Aiming to exploit the advantages

f both Canonical Correlation Analysis (CCA) and Kernel Canoni-

al Correlation Analysis (KCCA), they introduced a Canonical Local

reserving Latent Variable Model (CLP-LVM) that adds additional

egularized terms that preserve local structure in the data. Latent

paces are jointly learned for both image features and 3D poses

y maximizing the non-linear dependencies in the projected latent

pace while preserving local structure in the original space. To deal

ith multi-modalities in the data, they learned a multi-modal joint

ensity model between the latent image features and the latent

D poses in the form of Gaussian mixture regression which derives

xplicit conditional distributions for inference. A latent variable ap-

roach is also proposed by Andriluka et al. (2010) . Their objective

s to estimate the 3D human pose in real-world scenes with mul-

iple people present where partial or full occlusions occur. They

roposed a three-step hybrid generative/discriminative method us-
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Table 3 

3D human pose estimation from a sequence of monocular RGB images. Wherever a second reference is provided, it denotes the availability of source code for the method. 

Year First author Body Method highlights Evaluation Evaluation 

model datasets metrics 

2016 Tekin et al. (2016b) No Human detection in multiple frames and motion compensation to form 

a spatiotemporal volume with two ConvNets; 3D HoGs are employed 

and 3D pose is estimated with KRR and KDE regression 

HumanEva-I&II, 

Human3.6M, 

KTH Multiview 

Football II 

3D 

2016 Zhou et al. (2016a) , 

Zhou et al. (2016b) 

Yes If 2D joints are provided, a sparsity-driven 3D geometric prior and 

temporal smoothness model are employed; If not, 2D joints are 

treated as latent variables and a deep ConvNet is trained to predict 

the uncertainty maps; 3D pose estimation via an EM algorithm over 

the entire sequence 

Human3.6M, 

CMU MoCap, 

PennAction 

3D 

2015 Hong et al. (2015) Yes A multimodal deep autoencoder is used to fuse multiple features by 

unified representations hidden in hypergraph manifold; 

Backpropagation NN learns a non-linear mapping from 2D 

silhouettes to 3D poses 

HumanEva-I, 

Human3.6M 

3D, MJAE 

2015 Schick and 

Stiefelhagen (2015) 

Yes Discretize search space with supervoxels to reduce search space and 

apply them to 3DPS; Min-sum algorithm for pose inference 

HumanEva-I, 

UMPM 

3D, 3D pose 

2015 Wandt et al. (2015) Yes 3D poses as a linear combination of base poses using PCA; Periodic 

weight and a temporal bone length constancy regularizer is used to 

reduce the complexity and the camera parameters; 3D pose is 

estimated alternatively 

KTH Multiview 

Football II, 

CMU MoCap, 

HumanEva-I 

3D 

2013 Sedai et al. (2013b) Yes Hybrid approach for 3D pose tracking; Gaussian Process regression 

model for the discriminative part combined with the annealed 

particle filter to track the 3D pose 

HumanEva-I & 

II 

3D 

2013 Tian et al. (2013) No Introduce a CLP-LVM to preserve local structure; Learn a multi-modal 

joint density model in the form of Gaussian Mixture Regression 

CMU MoCap, 

Synthetic 

3D 

2012 Andriluka and 

Sigal (2012) 

No Exploit human context information towards 3D pose estimation; 

Estimate 2D Pose using a multi-aspect flexible pictorial structure 

model; Estimate 3D pose relying on a joint GPDM as a prior with 

respect to latent positions 

Custom 3D 

2012 Yamada et al. (2012) No Assume covariate shift setup and remove training set bias by 

re-weighting the training instances; Formulate two regression-based 

methods that utilize these weights 

HumanEva-I, 

Synthetic 

3D, MJAE 

2011 Chen et al. (2011a) No Visual feature selection and example-based pose retrieval via sparse 

representation; Sequential optimization via DP 

HumanEva-I, 

Synthetic 

Weighted 3D 

2010 

Andriluka et al. (2010) 

Yes Employ 2D discriminative part multi-view detectors and follow a 

tracking-by-detection approach to extract people tracklets; Pose 

recovery with hGPLVM and HMM 

HumanEva-II, 

TUD Stadtmitte 

3D 

2010 Bo and Sminchisescu 

(2010a) , Bo and 

Sminchisescu (2010b) 

No Background subtraction, HoG extraction and TGP regression HumanEva-I 3D 

2010 Valmadre and 

Lucey (2010a) , 

Valmadre and Lucey 

(2010b) 

Yes Rigid constraints can be enforced only on sub-structures and not in the 

entire body; Estimation performed with a deterministic least-squares 

approach 

CMU MoCap Qualitative 

2009 Rius et al. (2009) Yes Action-specific dynamic model discards non-feasible body postures; 

Work within a particle filtering framework to predict new body 

postures given the previously estimated ones 

HumanEva-I, 

CMU MoCap 

3D 

2009 Wei and Chai (2009) Yes Enforce independent rigid constraints in a number of frames and 

recover pose and camera parameters with a constrained nonlinear 

optimization algorithm 

CMU MoCap 3D 
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ng Bayesian formulation. They started by employing discriminative

D part detectors to obtain the locations of the joints in the image.

uring the second stage, people tracklets are extracted using a 2D

racking-by-detection approach which exploits temporal coherency

lready in 2D, improves the robustness of the 2D pose estima-

ion result, and enables early data association. In the third stage,

he 3D pose is recovered through a hierarchical Gaussian process

atent variable model (hGPLVM) which is combined with a Hid-

en Markov Model (HMM). Their method can track and estimate

oses of a number of people that behave realistically in an outdoor

nvironment where occlusions between individuals are common

henomena. 

Ek et al. (2008) introduced a method which also takes advan-

age of Gaussian process latent variable models (GPLVM). They

epresent each image by its silhouette, and model silhouette ob-

ervations, joint angles and their dynamics as generative models

rom shared low-dimensional latent representations. To overcome

he ambiguity that arises from multiple solutions, the latent space

ncorporates a set of Gaussian processes that give temporal pre-
ictions. Finally, by incorporating a back-constraint, they learn a

arametric mapping from pose to latent space to enforce a one-

o-one correspondence. Another interesting approach is provided

y Andriluka and Sigal (2012) who proposed a 3D pose estima-

ion framework of people performing interacting activities such as

ancing. The novelty of their approach lies in the fact that by tak-

ng advantage of the human-to-human context (interactions be-

ween the dancers) they estimate the poses more accurately. Af-

er detecting people over time in the videos and focusing on those

ho maintain close proximity, they estimate the pose of the two

eople in 2D by proposing a multi-person pictorial structure model

hat considers the human interaction. To estimate the 3D pose they

se a joint Gaussian Process Dynamic Model (GPDM) as a prior,

hich captures the dependencies between the two people, and

earn this model by minimizing the negative log of posterior with

espect to the latent positions and the hyper-parameters that they

efine. To perform inference of the final pose, a gradient-based

ontinuous optimization algorithm is used. A pose prior for 3D hu-

an pose tracking which (i) has lower complexity than GPDM, (ii)
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can handle large amounts of data and, (iii) is consistent if geodesic

distances are used instead of other metrics is proposed by Simo-

Serra et al. (2015) . 

Discussion of rigid constraints: Wei and Chai (2009) proposed a

3D reconstruction algorithm that reconstructs 3D human poses and

camera parameters from a few 2D point correspondences. Aim-

ing to eliminate the reconstruction ambiguity, they enforced in-

dependent rigid constraints across a finite number of frames. A

constrained nonlinear optimization algorithm is finally used to re-

cover the 3D pose. Later, Valmadre and Lucey (2010a) explored

the method of Wei and Chai (2009) and contradicted some of its

statements. They demonstrated that camera scales, bone lengths,

and absolute depths cannot be estimated in a finite number of

frames for a 17-bone body model and that rigid constraints can

be enforced only on sub-structures and not in the entire body.

They proposed a deterministic least-squares approach, which ex-

ploits the aforementioned results and estimates the rigid structure

of the torso, the camera scale, the bone lengths and the joint an-

gles. The method of Radwan et al. (2013) that was mentioned in

the previous section utilizes techniques of these two approaches

and extends their findings by requiring only a single image. Finally

Wandt et al. (2016) , proposed a method to estimate the non-rigid

human 3D pose. 3D poses are learned as bases from the training

set, a regularization term based on temporal bone consistency is

introduced and the 3D pose along with the camera parameters are

estimated alternatively. 

Particle filter algorithm: The particle filter algorithm is effective

for 3D human motion tracking ( Peursum et al., 2010 ), and the

works of Sedai et al. (2013b) and Liu et al. (2015) have provided

some extensions that improve its accuracy. Liu et al. (2015) , pro-

posed an exemplar-based conditional particle filter (EC-PF) in or-

der to track the full-body human motion. For EC-PF, system state

is constructed to be conditional to image data and exemplars in or-

der to improve the prediction accuracy. The 3D pose is estimated

in a monocular camera setup by employing shape context match-

ing when the exemplar-based dynamic model is constructed. In

the work of Sedai et al. (2013b) , a hybrid approach is introduced

that utilizes a mixture of Gaussian Process (GP) regression models

for the discriminative part and a motion model with an observa-

tion likelihood model to estimate the pose using the particle filter.

The discrete cosine transform of the silhouette features is used as

a shape descriptor. GP regression models give a probabilistic esti-

mation of the 3D human pose and the output pose distributions

from the GP regression are combined with the annealed particle

filter to track the 3D pose in each frame of the video sequence.

Kinematic constraints are enforced and a 16-joint cylindrical model

is employed. Promising results are reported on both single- and

multiple-camera tracking scenarios. 

Action-specific human body tracking: Works that belong to this

category use a priori knowledge on movements of humans while

performing an action. Jaeggli et al. (2009) proposed a generative

method combined with a learning-based statistical approach that

simultaneously estimates the 2D bounding box coordinates, the

performed activity, and the 3D body pose of a human. Their ap-

proach relies on strong models of prior knowledge about typical

human motion patterns. They use a Locally Linear Embedding (LLE)

on all poses in the dataset that belong to a certain activity to find

an embedding of the pose manifolds of low dimensionality. The

reduced space has mappings to both the original pose space and

the appearance (image) space. The mapping from pose to appear-

ance is performed with a Relevance Vector Machine kernel regres-

sor and the min-sum algorithm is employed to extract the optimal

sequence through the entire image sequence. Rius et al. (2009) dis-

cuss two elements that can improve the accuracy of a human pose

tracking system. First, they introduce an action-specific dynamic

model of human motion which discards the body configurations
hat are dissimilar to the motion model. Then, given the 2D po-

itions of a variable set of body joints, this model is used within

 particle filtering framework in which particles are propagated

ased on their motion history and previously learned motion di-

ections. 

Finally, the interested reader is encouraged to refer to the

ublications of Bray et al. (2006) ; Sigal and Black (2006) , and

garwal and Triggs (2006) , all of which introduced seminal meth-

ds on the 3D pose estimation problem from monocular images.

ince all three are covered in previous surveys ( Moeslund et al.,

0 06; Poppe, 20 07 ) they will not be further analyzed in the

resent review. 

.2. Recovering 3D human pose from a sequence of multi-view 

mages 

The publications discussed in this category are shown in

able 4 . The approaches of Belagiannis et al. (2014a) and

igal et al. (2012) employed 3D human models to estimate the

ose from a sequence of frames in multi-view scenarios. The

ethod of Belagiannis et al. jointly estimates the 3D pose of mul-

iple humans in multi-view scenarios. In such cases, more chal-

enges arise, some of which are the unknown identity of the hu-

ans in different views and the possible occlusions either be-

ween individuals or self-occlusions. Similar to the method of

urenius et al. (2013) the first obstacle that the authors wanted to

vercome is the high dimensional complex state space. Instead of

iscretizing it, they used triangulation of the corresponding body

oints sampled from the posteriors of 2D body part detectors in all

airs of camera views. The authors introduced a 3D pictorial struc-

ures (3DPS) model which infers the articulated pose of multiple

umans from the reduced state space while at the same time re-

olving ambiguities that arise both from the multi-view scenario

nd the multiple human estimation. It is based on a Conditional

andom Field (CRF) with multi-view potential functions and en-

orces rotation, translation (kinematic) and collision constraints. Fi-

ally, by sampling from the marginal distributions, the inference

n the 3DPS model is performed using the loopy belief propa-

ation algorithm. Belagiannis et al. (2014b) extended the previ-

us method, by making the 3DPS model temporally consistent. In

heir method, they first recover the identity of each individual us-

ng tracking and afterwards infer the pose. Knowing the identity of

ach person results in a smaller state space that allows efficient in-

erence. A temporal term for regularizing the solution is introduced

hich penalizes candidates that geometrically differ significantly

rom the temporal joint and ensures that the inferred poses are

onsistent over time. Furthermore, Belagiannis et al. (2015) built

pon their aforementioned works by using a 3DPS model under

ifferent body part parametrization. Instead of defining the body

art in terms of 3D position and orientation they retained only the

osition parameters and implicitly encoded the orientation in the

actor graph. 

A 3DPS model is also employed by Amin et al. (2014) to find

n initial 3D pose estimation which is then updated by utilizing

nformation from the whole test set, since key frames are selected

ased on the agreement between models in the ensemble or with

n AdaBoost classifier which uses three types of features. Their

ethod incorporates evidence from these keyframes and refines

he 2D model and improves the final 3D pose estimation accuracy.

igal et al. (2012) proposed a probabilistic graphical model of body

arts which they call loose-limbed body model ( Sigal et al., 2004 )

o obtain a representation of the human body. They use bottom-up

art detectors to enhance robustness and local spatial (and tem-

oral) coherence constraints to efficiently infer the final pose. The

ain differences from the aforementioned methods are that it ap-

lies to single human pose estimation and that the Particle Mes-
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Table 4 

3D human pose estimation from a sequence of multi-view RGB images. The Body Model column indicates whether a body model is employed. The Method Highlights column 

reflects the most important steps in each publication. 

Year First author Body model Method highlights Evaluation Evaluation 

datasets metrics 

2015 Elhayek et al. (2015) Yes Marker-less tracking of human joints; ConvNet-based 2D joint 

detection is combined with a generative tracking algorithm based on 

the Sums of Gaussians. 

MARCOnI, 

HumanEva-I 

3D 

2015 Moutzouris et al. (2015) Yes Training : Activity Manifolds are learned by Hierarchical Temporal 

Laplacian Eigenmaps; Testing : Pose is constrained by the hierarchy of 

Activity Manifolds; Hierarchical Manifold Search explores the pose 

space with inputs the observation and the previously learned activity 

manifolds 

HumanEva-II 3D 

2014 Amin et al. (2014) Yes 3DPS model for initial 3D pose estimation; Key frames are selected 

based on ensemble agreement and discriminative classification; 2D 

model is refined with that evidence to improve the final 3D pose 

estimation 

MPII Cooking, 

Shelf 

3D PCP 

2014 Belagiannis et al. 

(2014b) 

Yes Tracking for identity recovery and recover the pose by adding a 

temporal term to the 3DPS model 

Campus, Shelf, 

KTH Multiview 

Football II 

3D PCP 

2014 Belagiannis et al. 

(2014a) 

Yes Use 2D body part detectors and reduce pose space by triangulation; 

Introduce 3DPS model based on a CRF for inference 

Campus, Shelf, 

HumanEva-I, 

KTH Multiview 

Football II 

3D, 3D PCP 

2012 Sigal et al. (2012) Yes Loose-limbed body model representation with continuous-valued 

parameters and bottom-up part detectors; Belief propagation for 

inference 

HumanEva-I 3D 

2011 Daubney and 

Xie (2011) 

Yes Increasing uncertainty in the root node of the probabilistic graph by 

stochastically tracking the root node and estimating the posterior 

over the remaining parts 

HumanEva-I 3D 

2011 Liu et al. (2011) Yes Use of shape priors for multi-view probabilistic image segmentation 

based on appearance, pose and shape information 

Custom 3D 

2009 Gall et al. (2009) Yes Local pose optimization and re-estimation of labeled bones; Positions 

of the vertices are refined to construct a surface which will be the 

initial model for the next frame 

HumanEva-II, 

Custom 

3D 
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age Passing method they use to infer the pose from the graphical

odel, works in a continuous state space instead of a discretized

ne. The proposed method works both for pose estimation from a

ingle image and for tracking over time by propagating pose infor-

ation over time using importance sampling. 

Elhayek et al. (2015) proposed a novel marker-less method for

racking the 3D human joints in both indoor and outdoor sce-

arios using as low as two or three cameras. For each joint in

D, a discriminative part-based method was selected which esti-

ates the unary potentials by employing a convolutional network.

ose constraints are probabilistically extracted for tracking, by us-

ng the unary potentials and a weighted sampling from a pose pos-

erior guided by the model. These constraints are combined with

 similarity term, which measures for the images of each cam-

ra, the overlap between a 3D model, and the 2D Sums of Gaus-

ians (SoG) images ( Stoll et al., 2011 ). A new dataset called MPI-

ARCOnI ( Elhayek et al., 2015; 2016 ) was also introduced which

eatures 12 scenes recorded indoors and outdoors, with varying

ubjects, scenes, cameras, and motion complexity. 

Finally, Daubney and Xie (2011) introduced a method that per-

its greater uncertainty in the root node of the probabilistic graph

hat represents a human body by stochastically tracking the root

ode and estimating the posterior over the remaining parts after

pplying temporal diffusion. The state of each node, excluding the

oot, is represented as a quaternion rotation and all the distribu-

ions are modeled as Gaussians. Inference is performed by passing

essages between nodes and the Maximum-a-Posteriori (MAP) es-

imated pose is selected. 

Markerless Motion Capture using skeleton- and mesh- based ap-

roaches: Although such approaches form a different category since

hey may require a laser scan to extract the 3D mesh model, we

ill point out two methods for completeness that are illustrative

nd estimate the human body pose in 3D. Given an articulated

emplate model and silhouettes (extracted by background sub-
 h  
raction) from multi-view image sequences, Liu et al. (2011) and

all et al. (2009) proposed methods that recover the movement

ot only of the skeleton but also the 3D surface of a human body.

n both cases, the 3D triangle mesh surface model of the tracked

ubject in a static pose and the skinning weights of each vertex

hich connect the mesh to the skeleton can be acquired either by

 laser scan or by shape-from-silhouette methods. In the work of

all et al. (2009) the skeleton pose is optimized locally and labeled

ones (misaligned or with less than three DOF) are re-estimated

y global optimization such that the projection of the deformed

urface fits the image data in a globally optimal way. The posi-

ions of all vertices are then refined to fit the image data and the

stimated refined surface and skeleton pose serve as initialization

or the next frame to be tracked. Liu et al. (2011) used shape pri-

rs to perform multi-view 2D probabilistic segmentation of fore-

round pixels based on appearance, pose and shape information.

heir method can handle occlusions in challenging realistic human

nteractions between people. 

. Existing datasets and evaluation measures 

.1. Evaluation datasets 

Discussing the advances in human pose estimation,

oeslund et al. (2006) pointed out in their survey in 2006,

hat a limitation of existing research was the comparison of differ-

nt approaches on common datasets and performance evaluation

f accuracy against ground truth. The HumanEva dataset created

y Sigal et al. (2010) addresses exactly these issues. It contains

ultiple subjects performing a set of predefined actions with

everal repetitions. It is a comprehensive dataset that contains

ynchronized video from multiple camera views, associated 3D

round truth, quantitative evaluation measures, and a baseline

uman tracking algorithm. It is divided into two sets (I & II)
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Table 5 

Evaluation datasets for the 3D pose estimation task and their key characteristics. 

Year Dataset No. of videos No. of subjects Characteristics 

2015 MARCOnI ( Elhayek et al., 2015 ) 12 Varies Multi-view, Indoor & Outdoor, Varying number and 

types of cameras, and conditions 

2015 PosePrior ( Akhter and Black, 2015 ) N/A N/A Prior based on Pose-Conditioned Joint Angle Limits 

2014 Human 3.6M ( Ionescu et al., 2014 ) 1376 11 15 actions, 3.6 × 10 6 poses 

2014 Campus ( Belagiannis et al., 2014a ) 1 3 Multiple People, Outdoor 

2013 KTH Multiview Football II ( Kazemi et al., 2013 ) 4 2 4 actions 

2012 MPII Cooking Activities ( Rohrbach et al., 2012 ) 44 12 65 actions 

2011 Shelf ( Berclaz et al., 2011 ) 1 4 Multiple People 

2011 UMPM ( Van der Aa et al., 2011 ) 36 30 Multiple People 

2010 HumanEva-I&II ( Sigal et al., 2010 ) 56 4 6 actions 

2010 TUD Stadtmitte ( Andriluka et al., 2010 ) 1 N/A Multiple People, Outdoor, Qualitative 

2009 TUM Kitchen ( Tenorth et al., 2009 ) 20 4 4 actions 

2009 UVA 3D ( Hofmann and Gavrila, 2009 ) 12 N/A Outdoor 

N/A CMU CMU Lab 2605 109 23 actions 
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with different number and types of video cameras, a different

numbers of motions, different types of data and synchronization.

The datasets are broken into training, validation, and test sub-sets.

For the testing subset, the ground truth data are withheld and

a web-based evaluation system is provided. It is by far the most

widely used dataset in the literature since it allows different

methods to be fairly compared using the same data and the same

error measures. A recognition-based motion capture baseline on

the HumanEva-II dataset is provided by Howe (2011) . Nevertheless,

there are other significant datasets available for benchmarking

(e.g., the CMU Graphics Lab Motion Capture database CMU Lab ,

the Human 3.6M dataset ( Ionescu et al., 2011; 2014 ) or the KTH

Multiview Football Dataset II ( Kazemi et al., 2013 ). We present a

summary of them in Table 5 . 

Limitations of the available datasets : Existing research, con-

strained by the available datasets, has addressed mainly the 3D

pose estimation problem in controlled laboratory settings where

the actors are performing specific actions. This is due to the fact

that collecting videos in unconstrained environments with accurate

3D pose ground truth is impractical. Following the example of the

HumanEva and the Human3.6M datasets, which have contributed

to advances in the field over recent years, there is a need for real-

istic datasets which should be captured (i) in as unconstrained and

varying conditions as possible where occlusions can occur, (ii) with

several people with varying anthropometric dimensions, (iii) with

not necessarily only one actor per video (iv) with actors that wear

loosely fitting clothing, and (v) with human-human and human-

object interactions. 

5.2. Evaluation metrics 

The variety of challenges that arise in the human pose and mo-

tion estimation task result in several evaluation metrics adapted

to the problem that the authors are trying to address each time.

Thus, a fair comparison between the discussed methods would be

impossible even for approaches that use the same dataset, since

different methods train and evaluate differently. For the HumanEva

dataset ( Sigal et al., 2010 ), the authors introduced the 3D Error ( E)

which is the mean squared distance in 3D (measured in millime-

ters) between the set of virtual markers corresponding to the joint

centers and limb ends: 

E(x, ̂  x ) = 

1 

M 

M ∑ 

i =1 

|| m i (x ) − m i ( ̂  x ) || , (1)

where x represents the ground truth pose, ˆ x refers to the esti-

mated pose, M is the number of virtual markers and m i ( x ) rep-

resents the 3D position of the i th marker. It is also referred to as

Mean Per Joint Position Error (MPJPE) ( Ionescu et al., 2014 ). Simo-
erra et al. (2012) introduced a rigid alignment step using least

quares to compare with methods that do not estimate a global

igid transformation. They refer to this error as 3D pose error. 

A common 2D pose estimation error in the literature is the

ercentage of Correctly estimated Parts (PCP) error which mea-

ures the percentage of correctly localized body parts ( Ferrari et al.,

008 ). The PCP error has recently been used in 3D ( Amin et al.,

014; Belagiannis et al., 2014a; Burenius et al., 2013; Schick and

tiefelhagen, 2015 ) and a part is classified as “correctly estimated”

f: 

‖ s n − ˆ s n ‖ + ‖ e n − ˆ e n ‖ 

2 

≤ α ‖ s n − e n ‖ , (2)

here s n and e n represent the ground truth 3D coordinates of the

tart and end points of part n , ˆ s n and ˆ e n the respective estimations,

nd α is the parameter that controls the threshold. 

Evaluation measurements are frequently used to capture error

n degrees. Illustrative examples can be found in the early pub-

ications of Agarwal and Triggs (20 04 , 20 06) and in the work of

ing et al. (2008) . The Mean Joint Angle Error (MJAE) is the mean

over all angles) absolute difference between the true and esti-

ated joint angles in degrees, and is given by: 

JAE = 

∑ M 

i =1 | (y i − y ′ 
i 
) mod ± 180 

◦| 
M 

, (3)

here M is the number of joints and y i and y ′ 
i 

are the esti-

ated and ground truth pose vectors respectively and mod is the

odulus operator. The mod ± 180 ° term reduces angles to the

 −180 ◦, +180 ◦] range. 

.3. Summary of performance on HumanEva-I 

Aiming to better understand the advantages and limitations of

arious 3D human pose estimation approaches we focused on the

umanEva-I dataset, grouped the respective methods based on the

nput (e.g., single image or video, monocular or multi-view), and

eport performance comparisons in each category. In Table 6 we

eport the 3D pose error (i.e., after performing rigid alignment as

uggested by Simo-Serra et al. (2012) ) of methods that employ in-

ormation from a single monocular image. Tables 7 and 8 summa-

ize the results (3D error in mm ) of methods, the input of which

s a single multi-view image or a video respectively. However, this

omparison is just meant to be indicative, and cannot be treated as

omplete, since: (i) it covers a subset of the state of the art, and (ii)

ifferent methods are trained and evaluated differently depending

n the problem that are trying to address. 

From the approaches that use a single monocular image as an

nput, the best results for each action are obtained by the methods
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Table 6 

3D pose error (i.e., after performing rigid alignment) in mm of methods that employ information from a monocular 

single image on the HumanEva-I dataset. Results are reported for camera C1 and S1, S2 and S3 refer to the three 

subjects that perform the action. 

Year Method Walking Jogging 

S1 S2 S3 Average S1 S2 S3 Average 

2016 Yasin et al. (2016a) 35.8 32 .4 41 .6 36 .6 46 .6 41 .4 35 .4 41 .1 

2014 Kostrikov and Gall (2014) 44.0 30 .9 41 .7 38 .9 57 .2 35 .0 33 .3 41 .8 

2014 Wang et al. (2014a) 71.9 75 .7 85 .3 77 .6 62 .6 77 .7 54 .4 64 .9 

2013 Radwan et al. (2013) 75.1 99 .8 93 .8 89 .6 79 .2 89 .8 99 .4 89 .5 

2013 Simo-Serra et al. (2013) 65.1 48 .6 73 .5 62 .4 74 .2 46 .6 32 .2 51 .0 

2012 Simo-Serra et al. (2012) 99.6 108 .3 127 .4 111 .8 109 .2 93 .1 115 .8 106 .0 

2010 Bo and Sminchisescu (2010a) 38.2 32 .8 40 .2 37 .1 42 .0 34 .7 46 .4 41 .0 

Table 7 

3D Error ( E) in mm of single-image, multi-view meth- 

ods of subject S1 on the HumanEva-I dataset. 

Year Method Walking Boxing 

2013 Amin et al. (2013) 54.5 47.7 

2012 Sigal et al. (2012) 89.7 N/A 

2011 Yao et al. (2011) 44.0 74.1 

2010 Taylor et al. (2010) 55.4 75.4 

Table 8 

3D Error ( E) in mm of video-based methods of subject S1 on the 

HumanEva-I dataset. The first two approaches employ informa- 

tion from a sequence of monocular images whereas the last four 

are multi-view. 

Year Method Walking Boxing 

2016 Tekin et al. (2016b) 37.5 50.5 

2010 Bo and Sminchisescu (2010a) 45.4 42.5 

2015 Elhayek et al. (2015) 66.5 60.0 

2014 Belagiannis et al. (2014a) 68.3 62.7 

2012 Sigal et al. (2012) 66.0 N/A 

2011 Daubney et al. (2012) 87.3 N/A 
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f Kostrikov and Gall (2014) ; Yasin et al. (2016a) and Bo and Smin-

hisescu (2010a) . The key characteristic of Yasin et al. (2016a) is

hat they employ information from 3D motion capture data and

roject them in 2D so as to train a regression model that predicts

he 3D-2D projections from the 2D joint annotations. After esti-

ating the 3D pose of a new test image, the 2D pose can be re-

ned and iteratively update the 3D pose estimation. 

For the results of Yasin et al. (2016a) reported in Table 6 , mo-

ion capture data from the HumanEva-I dataset is used to train

he regressor. When the motion capture data are from a different

ataset (e.g., CMU CMU Lab ), the 3D pose error is 55.3 mm for

he walking action, which is still better than most of the meth-

ds. However, for the jogging action, the respective average 3D

ose error is 67.9 mm from which we conclude that estimating

he 3D pose for more complicated and not cyclic actions without

onstrained prior information (i.e., 3D motion capture data from

he same dataset) still remains a challenging task. Kostrikov and

all (2014) proposed a method that uses regression forests to infer

issing depth data of image features and 3D pose simultaneously.

hey hypothesize the depth of the features by sweeping with a

lane through the 3D volume of potential joint locations and em-

loy a 3D PSM to obtain the final pose. Unlike Yasin et al. (2016a) ,

 limitation of this approach is that it requires the 3D annota-

ions during training to learn the 3D volume. Finally, Bo and Smin-

hisescu (2010a) followed a regression-based approach that uses

aussian process prior to model correlations among both inputs

nd outputs in multivariate, continuous valued supervised learning

roblems. The advantages of their approach are that it does not
equire an initial pose to perform an optimization scheme or a 3D

ody model such as the method of Wang et al. (2014a) . However,

ackground subtraction is utilized, which is a strong assumption

hat prevents this method of dealing with real-life scenarios with

 changing background. 

An interesting observation arises from the reported results of

ethods that employ information from multiple views whether

t’s from a single image ( Table 7 ) or from a sequence of

mages ( Table 8 ). That is, the 3D error of the method of

min et al. (2013) that uses a single multi-view image is signifi-

antly lower than the 4 methods reported in Table 8 the input of

hich are multi-view videos. An explanation for this is that video-

ased methods do not exploit fully the temporal information (e.g.,

y following a tracking-by-detection approach Andriluka et al.,

010 ). Finally, the 3D error reported by Tekin et al. (2016b) which

s based on a monocular sequence of images is lower in the walk-

ng sequence than the rest of the methods regardless of the num-

er of views. The key characteristic of this regression-based ap-

roach is that they exploit temporal information very early in the

odeling process, by using a Kernel Dependency Estimation (in the

ase of HumanEva-I) to shift the windows of the detected person

o as the subject remains centered. Then 3D HoG features are ex-

racted to form a spatiotemporal volume of bounding boxes, and a

egression scheme is employed to predict the final 3D pose. 

In summary, although model-based approaches have demon-

trated significant improvements over the past few years,

egression-based approaches, despite their own limitations which

re described in detail in Section 1.2 and in the review of

igal (2014) , tend to outperform the rest, at least in the HumanEva-

 dataset. 

. Experimental evaluation 

In order to provide the reader with an overview of the cur-

ent capabilities of 3D human pose estimation techniques we

onducted extensive experimentations with three state-of-the- 

rt approaches, namely the methods of Wang et al. (2014a) ;

hou et al. (2015a) and Bo and Sminchisescu (2010a) (presented

n detail in Section 3.1 ). Instead of evaluating these methods in

xisting real-world datasets, we decided to go for a more generic

valuation and specifically developed a 3D synthetic dataset that

imulates the human environment, i.e., the SynPose300 dataset.

he idea is to be able to fully control the testing environments

nd human poses and ensure a common evaluation setup, which

ould have not been possible using actual people/actors (e.g., due

o human and time constraints). SynPose300 can be used by the

esearch community as supplementary to the existing datasets

hen the goal is to test the robustness of 3D pose estimation

echniques to (i) different anthropometric measurements for each

ender; (ii) the viewing distance and the angle; (iii) actions of

arying difficulty; and (iv) larger clothes. The SynPose300 dataset
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Table 9 

SynPose300 Dataset summary. 

Subjects 8 (4 female & 4 male) 

Percentiles (%) 20, 40, 60, 80 

Actions 3 

Distances 2 (close, far) 

Points of view 3 (0 °, 45 °, 90 °) 
Types of clothes 2 (Tight, Large) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Illustrative frames of the SynPose300 dataset. The first row corresponds to 

20 th , 40 th and 80 th percentile females wearing tight clothes, performing three ac- 

tions from a “close” camera distance, and under (0 °, 45 °, 90 °) points of view. The 

second row corresponds to males of the same percentiles wearing large clothes, at 

the same frame of the video, performing the same actions from a “far” camera dis- 

tance. 
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and the ground truth are released publicly for the reproducibility

of the results and are available online at Boteanu et al. (2016) Var-

ious experiments were conducted using this open framework and

insights are provided. 

Limitations : When designing the conditions of the proposed

dataset we focused only on specific parameters (anthropometry,

action, clothes, distance and angle from the camera). Thus, the con-

ditions in which the synthetic human models act, such as the back-

ground and lack of noise, are not realistic. The available options for

the clothes of the human models were limited and, as a result, we

used jeans and jackets in the large clothes category since loosely

fitting garments such as dresses were not available. 

The rest of this section is structured as follows. Section 6.1 pro-

vides the description of SynPose300 and in Section 6.2 the experi-

mental investigation of the chosen approaches is presented. 

6.1. Description of the proposed synthetic dataset 

As mentioned in the introduction of this section, we eval-

uated the state-of-the-art 3D pose estimation approaches of

Wang et al. (2014a) ; Zhou et al. (2015a) and Bo and Sminchis-

escu (2010a) – the code of which is publicly available – on a

synthetic dataset (SynPose300) we created for this paper. Exist-

ing datasets cover in great depth pose variations under different

actions and scenarios. However, they contain a small number of

humans of unknown anthropometric measurements, in controlled

environments, who wear tight clothes which facilitate the pose es-

timation task. For example, all actors in the Human3.6M dataset

( Ionescu et al., 2014 ) wear shorts and t-shirts, whereas in the Hu-

manEva dataset ( Sigal et al., 2010 ) only one out of four subjects is

female and only one wears clothes which are not tight. 

To provide an even more challenging evaluation framework,

SynPose300 provides a controlled environment where the afore-

mentioned constraints are taken into consideration. SynPose300

comprises 288 videos, their respective 3D ground truth joint lo-

cations (25-limb models) and the parameters of the camera (focal

length, location and translation matrices). Each video is five sec-

onds long (24 fps), encoded using Xvid encoder (800 × 600 res-

olution, RGB images). The videos were generated using the open

source software tools MakeHuman, (20 0 0) and Blender Foundation,

(2002) . The ground truth was computed for each video using the

.bvh files. First, each video was exported from Blender in Biovi-

sion Hierarchy format. The resulting files were further processed

in MATLAB and for each frame of the video, we parsed the 3D co-

ordinates for all 26 joints. Its summary can be found in Table 9 . 

It contains videos from eight virtual humans (four female and

four male) all of which follow specific anthropometric measure-

ments in percentiles obtained from the CAESAR anthropometric

database SAE International . For example, a 20 th percentile male,

is a male with 20 th percentile segments. The measurements we

used are the stature, the spine to shoulder distance, the shoulder

to elbow distance, the elbow to wrist distance, the knee height,

the hip to knee distance, the hip circumference, the pelvis to neck

distance and the neck to head distance. The humans perform three

actions (“walking”, “picking up a box” and “gymnastics”) that were

selected based on the 3D pose estimation difficulty they present.

Each video was captured with both tight and larger clothes, from
hree points of view (0 °, 45 °, 90 °) and from two camera distance

anges (close and far). In the “close” scenario, the distance of the

uman model from the camera in the first frame ranges from 3 m

o 5 m and was selected so the human was as close as possible to

he camera, but without getting out of the camera’s field of view

hile performing the action. In the “far” case, the distance is twice

s much. 

In general, background subtraction methods are employed as

 pre-processing step to isolate humans from the background

 Hofmann and Gavrila, 2012 ). Therefore, in our tests we do not em-

loy background. Illustrative examples of the proposed dataset are

epicted in Fig. 6 . 

.2. Experimental results 

The methods of Wang et al. (2014a) and Zhou et al. (2015a) rep-

esent a 3D pose as a combination of a set of bases (i.e., 3D hu-

an poses) which are learned from the whole SynPose300 dataset.

n both methods, the dictionary of poses is learned using sparse

oding. Once the set of bases is computed, 2D pose estimation is

erformed to obtain the joint locations in the image plane. Then,

tarting from an initial 3D pose, an Alternating Direction Method of

ultipliers (ADMM) optimization scheme is followed to estimate

he joint locations in 3D. A more extensive investigation on the

mpact of the dictionary of bases, on the 3D pose estimation ac-

uracy is offered in Experiment 3. Other parameters required as

rior information for both methods are (i) the structure of the 2D

keletal model and (ii) the structure of the 3D skeleton both of

hich remained unchanged throughout the experimental investi-

ation. For the 2D pose estimation task we employed the approach

f Yang and Ramanan (2011) , which uses a pre-trained 2D hu-

an skeletal model trained on the PARSE dataset ( Ramanan, 2006 ).

o evaluate the regression-based method of Bo and Sminchis-

scu (2010a) , background subtraction is first performed so as to

eep only the region where the human is located in each frame,

nd HoG features are extracted. Aiming to keep the length of the

eature vector consistent throughout the video sequence, we first

esized the obtained region to the size of the bounding box of the

rst frame and then computed the HoG features. From the pro-

ided techniques, we evaluated the Twin Gaussian Processes with

 Nearest Neighbors and the Weighted K-Nearest Neighbor Regres-

ion methods. 

To speed-up the experimental procedure and since temporal in-

ormation from the video is not exploited, we processed one ev-

ry five frames for each video. Thus, 3D pose estimation was per-

ormed in 24 monocular images per video. Finally, the evaluation

etric we chose is the 3D pose error which is the mean Euclidean
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Fig. 7. Comparison of the performance of four state-of-the-art approaches for female (left) male (right) body models for the walking action with varying percentiles of 

anthropometric measurements. 

Table 10 

3D pose error in mm for four state-of-the-art methods under different distances from the camera 

and points of view for the walking action. 

Close Far 

0 ° 45 ° 90 ° 0 ° 45 ° 90 °

Wang et al. (2014a) 106 .7 108 .6 131 .7 126 .4 125 .3 135 .9 

Zhou et al. (2015a) 35 .3 37 .6 41 .2 38 .4 38 .8 43 .0 

Bo and Sminchisescu (2010a) – WKNN 26 .1 38 .8 52 .5 26 .4 53 .3 56 .4 

Bo and Sminchisescu (2010a) – TGPKNN 154 .4 180 .8 167 .2 139 .2 164 .2 170 .1 
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Table 11 

3D pose error in mm for females when the pose stance of the initial pose is cor- 

rect and the anthropometric measurements vary. The rows correspond to the an- 

thropometric measurements of the ground truth whereas the columns to the an- 

thropometric measurements of the initial pose provided as an input. 

F 20 F 40 F 60 F 80 

F 20 – 37 75 103 

F 40 53 – 34 66 

F 60 70 34 – 32 

F 80 101 65 40 –
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istance between the estimation and the ground truth after per-

orming a rigid alignment of the two shapes as proposed by Simo-

erra et al. (2012) . 

Experiment 1 - Robustness to different anthropometric mea-

urements : The objective of this experiment is to assess the im-

act of different anthropometric measurements on the 3D pose es-

imation task. The obtained results are summarized in Fig. 7 . The

nthropometry of the human whose pose we want to estimate af-

ects the 3D pose estimation accuracy when the model-based ap-

roach of Wang et al. (2014a) is tested. In that case, the error is

ncreasing more than 20% when we use a 40 th instead of a 20 th 

ercentile female. For the rest of the techniques, the anthropome-

ry of the human does not affect the pose estimation accuracy. 

Experiment 2 - Robustness to viewing distance and point of

iew : The objective of this experiment is to assess the robustness

f the 3D pose estimation approaches to different points of view

nd distances from the camera. A summary of the results is of-

ered in Table 10 . The camera view affects the pose accuracy, as

stimating the 3D pose from a wider angle is a more challeng-

ng task since occlusions between different parts take place. When

he camera is placed at a close distance from the human, the ap-

roaches of Zhou et al. (2015a) and the Weighted KNN of Bo and

minchisescu (2010a) have an average 3D pose error of 35.3 and

6.1 mm over all videos of the walking action when the point of

iew is 0 °. When the angle of the camera is at 90 °, all four meth-

ds performed significantly worse. A similar pattern is followed

hen the distance from the camera is increased, since the aver-

ge error over all angles increased by 12.33% for the method of

ang et al. (2014a) and 15.32% for the Weighted KNN method of

o and Sminchisescu (2010a) . For both model-based approaches,

he change of the angle of the camera from 0 ° to 45 ° does not af-

ect significantly the pose estimation accuracy since the 3D shape

an be reconstructed from the available poses in the dictionary

ith approximately the same error. Furthermore, we observed that

he approach of Zhou et al. (2015a) was more robust to angle

nd distance variations, and that at 90 °, for all four methods, the

hange of distance of the camera does not affect significantly the
D pose error, since the pose is already difficult to be estimated

ccurately. 

Experiment 3 - Robustness to the error imposed by

he dictionary of poses : For the model-based approaches of

ang et al. (2014a) and Zhou et al. (2015a) the dictionary was

omprised of poses of both different anthropometric measure-

ents and 3D pose stances than the ground truth. Aiming to in-

estigate the sensitivity of the pose estimation task to the initial-

zation of the 3D pose and the set of poses in the dictionary we

xperimented under two scenarios. In the first case, the provided

nitial 3D pose has varying anthropometric measurements, but the

est of the conditions are kept the same and the pose stance of

he humans is 100% accurate. For example, for a 20 th percentile fe-

ale in the j th frame of a video, we provide each time the pose

f the j th frame of similar videos of a different percentile female.

ote that in this experiment we investigated only the method of

ang et al. (2014a) , since its accuracy depends more on the con-

itions of experimental setup. A summary of the results can be

ound in Tables 11 and 12 . In both female and male cases, the 3D

ose error increases when the provided initial anthropometry is far

rom the real one. However, the errors obtained in this experiment

re lower than all the other scenarios from which we can conclude

hat finding the correct pose stance - even when the anthropome-

ry of the estimated human is wrong - is the most challenging task

n the 3D pose estimation problem. 
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Table 12 

3D pose error in mm for males when the pose stance of the initial pose is correct 

and the anthropometric measurements vary. The rows correspond to the anthro- 

pometric measurements of the ground truth whereas the columns to the anthro- 

pometric measurements of the initial pose provided as an input. 

M 20 M 40 M 60 M 80 

M 20 – 37 75 110 

M 40 41 – 51 75 

M 60 83 44 – 82 

M 80 109 73 45 –

Fig. 8. The impact of the bases in dictionary on the 3D pose error for actions of 

varying difficulty for the method of Zhou et al. (2015a) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Mean 3D pose error per joint throughout the whole dataset for the 

Weighted KNN method of Bo and Sminchisescu (2010a) . L corresponds to left and 

R to right. 
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In the second case, the dictionary of poses is comprised of

poses only from the respective video, and thus it has the cor-

rect anthropometric measurements but an inaccurate pose stance

which has to be estimated. The method of Zhou et al. (2015a) was

tested and the results obtained from the second scenario are pre-

sented in Fig. 8 . When the dictionary contains poses that belong

only from the same video, there is a 31.4% decrease in the 3D pose

error for the walking action and a 24.3% for the picking-up-box ac-

tion which is of medium difficulty. The error in the third and most

challenging action is reduced only by 6.9%, and the reason for this

is the really challenging nature of the gymnastics action. 

Experiment 4 - Robustness to actions with different levels

of difficulty and to large clothing : The objectives of these ex-

periments are to test the importance of the impact of actions

with varying difficulty and clothing of a human on the 3D pose

estimation performance. The results for different types of ac-

tions and clothes are depicted in Table 13 . As the difficulty of

the action increases (from walking to pick up box and then to

gymnastics), the error increases in all cases. The approaches of

Zhou et al. (2015a) and the Weighted KNN of Bo and Sminchis-

escu (2010a) demonstrated small 3D pose errors for the first two

actions compared to the other two techniques. In the gymnastics

action which demonstrates high variance and challenging poses,

the major source of error is in the estimated pose and not in

depth. When different types of clothes model-based methods per-

formed better with larger clothes whereas regression-based ap-

proaches demonstrated better results with tighter clothes. This be-

havior can be attributed to the fact that regression-based tech-

niques like the Weighted KNN or the Twin Gaussian Processes KNN

rely on image-based features (i.e., HoGs), whereas the methods of

Wang et al. (2014a) and Zhou et al. (2015a) require an initial model

and a skeleton structure that tend to generalize better when the

human wears larger clothes and thus, the human silhouette covers

a larger region. 

Comparison with the originally reported results : For com-

pleteness we present the evaluation results of the two state-of-

the-art methods as reported in the respective publications. We

compare the results obtained from the “walking” action in our in-

vestigation with the method of Wang et al. (2014a) and Bo and
minchisescu (2010a) which are tested in the walking action of

he HumanEva-I dataset. The reported results are presented in

able 14 . The results of both methods are better than those ob-

ained from our experimental investigation for the walking action,

nd the reason for this is that the conditions under which we

ested the robustness of the 3D pose estimation accuracy are more

hallenging. 

Aiming to identify which joints contribute the most towards the

nal error, we also compute the average 3D pose error per joint

hroughout the whole dataset and the results are depicted in Fig. 9 .

oints that belong to the main body, such as the neck, pelvis and

ips, contribute relatively little towards the total error compared

o the wrists or the feet. 

Finally, we present examples of failures and successful esti-

ations of the method of Wang et al. (2014a) in images of the

ynPose300 dataset. In Fig. 10 , given the same frame (first im-

ge) and the same 2D joint locations, by applying the method of

ang et al. (2014a) twice, different results are obtained. In the sec-

nd image the pose estimation algorithm fails since the estimated

ose is presented facing the opposite direction. The reasons for this

ehavior are: a) the ill-posed nature of the problem and b) the hu-

an is bending and thus, the 2D locations are misleading for the

ecovery of the 3D joints. 

. Conclusion 

In this paper, we offer an overview of recently published pa-

ers addressing the 3D pose estimation problem from RGB images

r videos. We proposed a taxonomy that organizes pose estima-

ion approaches into four categories based on the input signal: (i)

onocular single image, (ii) single image in multi-view scenario,

iii) sequence of monocular images, and (iv) sequence of images

n multi-view settings. In each category, we grouped the meth-

ds based on their characteristics and paid particular attention to

he body model when employed, to the pose estimation approach

sed, how inference is performed, and to other important steps

uch as the features or the pre-processing methods used. We cre-

ted a synthetic dataset of human models performing actions un-

er varying conditions and assessed the sensitivity of the pose es-

imation error under different scenarios. The parameters we inves-

igated were the anthropometry of the human model, the distance

rom the camera and the point of view, the clothing and the action

erformed. 

Articulated 3D pose and motion estimation is a challenging

roblem in computer vision that has received a great deal of atten-

ion over the last few years because of its applications in various

cientific or industrial domains. Research has been conducted vig-

rously in this area for the past few years, and much progress has

een made in the field. Encouraging results have been obtained,
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Table 13 

The impact of the difficulty of the action and the type of clothes is investigated for four state-of-the-art 

approaches. 

Actions Clothes 

Walking Picking up box Gymnastics Tight Large 

Wang et al. (2014a) 105 .4 295 .2 331 .4 129 .1 118 .6 

Zhou et al. (2015a) 38 .5 92 .6 200 .3 38 .3 35 .4 

Bo and Sminchisescu (2010a) – WKNN 40 .6 90 .6 214 .3 39 .3 41 .8 

Bo and Sminchisescu (2010a) – TGPKNN 162 .6 287 .0 318 .9 159 .8 165 .5 

Fig. 10. For the same image frame (a), we present examples where the method of Wang et al. (2014a) fails (b), and successfully estimates (c), the 3D pose of the human 

subject. The green solid line human skeleton corresponds to the ground truth and the red dashed line to the estimated 3D pose.(For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Table 14 

3D pose error in mm of the methods of Wang et al. (2014a) and Bo and 

Sminchisescu (2010a) in the walking actions for camera C1 of the HumanEva- 

I dataset. S1, S2 and S3 refer to the three subjects that perform the action. 

Dataset ( Wang et al., 2014a ) ( Bo and Sminchisescu, 2010a ) 

HumanEva-I S1 71 .9 38 .2 

HumanEva-I S2 75 .7 32 .8 

HumanEva-I S3 85 .3 40 .2 

SynPose300 105 .4 40 .6 
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trong methods have been proposed to address the most chal-

enging problems that occur and current 3D pose estimation sys-

ems have reached a satisfactory maturity when operating under

onstrained conditions. However, they are far from reaching the

deal goal of performing adequately in the conditions commonly

ncountered by applications utilizing these techniques in practical

ife. Thus, 3D pose estimation remains a largely unsolved problem

nd its key challenges are discussed in the rest of this section. 

The first challenge is the ill-posed nature of the 3D pose esti-

ation task especially from a single monocular image. Similar im-

ge projections can be derived from completely different 3D poses

ue to the loss of 3D information. In such cases, self-occlusions

re common phenomena, which result in ambiguities that prevent

xisting techniques from performing adequately. A promising so-

ution towards this direction is utilizing temporal information or

ulti-view setups which can resolve most of the ambiguities that

rise in monocular scenarios ( Andriluka et al., 2010; Belagiannis

t al., 2014b ). 

The second issue is the variability of human poses and shapes

n images or videos in which the subjects perform complicated ac-

ions such as the gymnastics action in the proposed SynPose300

ataset. To address this issue future approaches can benefit from

he recent release of the PosePrior dataset ( Akhter and Black, 2015 )

hich includes a prior that allows anthropometrically valid poses

nd restricts the ones that are invalid. 

A third challenging task is the estimation of the 3D pose of

ultiple people who interact with each other and with the en-
ironment. In such cases handling occlusions is a difficult task

ince, besides self-occlusions, occlusions of limbs can also occur

rom other people or objects. Methods that employ a tracking-by-

etection approach in a multi-view setup ( Andriluka et al., 2010;

elagiannis et al., 2014a; 2014b ) can overcome most of these diffi-

ulties and address this problem successfully. 

Finally, 3D pose estimation cannot be successfully incorporated

n real-life applications unless future approaches are able to per-

orm sufficiently in outdoor environments where the lighting and

ackground conditions as well as the behavior of the humans sub-

ects are unconstrained. Although datasets in unconstrained out-

oor environments with accurate 3D pose ground truth, would

esult into future approaches that would tackle these limitations,

heir creation is almost unrealistic due to the size of hardware

quipment that is required to capture 3D data. A few methods

 Belagiannis et al., 2014a; Hofmann and Gavrila, 2009 ) have tried

o address this limitation, by providing datasets (along with 3D an-

otation of the joints) in outdoor environments but they are far

rom simulating effectively real-life conditions. 
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